Chun-cheng Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9112948/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chemical Society Reviews, 2010, 39, 4206.	38.1	2,011
2	Efficient Degradation of Toxic Organic Pollutants with Ni2O3/TiO2-xBx under Visible Irradiation. Journal of the American Chemical Society, 2004, 126, 4782-4783.	13.7	1,105
3	Visibleâ€Lightâ€Induced Aerobic Oxidation of Alcohols in a Coupled Photocatalytic System of Dyeâ€Sensitized TiO ₂ and TEMPO. Angewandte Chemie - International Edition, 2008, 47, 9730-9733.	13.8	440
4	Selective Formation of Imines by Aerobic Photocatalytic Oxidation of Amines on TiO ₂ . Angewandte Chemie - International Edition, 2011, 50, 3934-3937.	13.8	396
5	Effect of Transition Metal Ions on the TiO2-Assisted Photodegradation of Dyes under Visible Irradiation:Â A Probe for the Interfacial Electron Transfer Process and Reaction Mechanism. Journal of Physical Chemistry B, 2002, 106, 318-324.	2.6	369
6	Change of Adsorption Modes of Dyes on Fluorinated TiO ₂ and Its Effect on Photocatalytic Degradation of Dyes under Visible Irradiation. Langmuir, 2008, 24, 7338-7345.	3.5	359
7	Photocatalytic Degradation of Organic Pollutants Under Visible Light Irradiation. Topics in Catalysis, 2005, 35, 269-278.	2.8	358
8	Mechanism of Photodecomposition of H2O2 on TiO2 Surfaces under Visible Light Irradiation. Langmuir, 2001, 17, 4118-4122.	3.5	324
9	Photodegradation of Sulforhodamine-B Dye in Platinized Titania Dispersions under Visible Light Irradiation:  Influence of Platinum as a Functional Co-catalyst. Journal of Physical Chemistry B, 2002, 106, 5022-5028.	2.6	307
10	Photosensitized Degradation of Dyes in Polyoxometalate Solutions Versus TiO2 Dispersions under Visible-Light Irradiation: Mechanistic Implications. Chemistry - A European Journal, 2004, 10, 1956-1965.	3.3	288
11	Probing paramagnetic species in titania-based heterogeneous photocatalysis by electron spin resonance (ESR) spectroscopy—A mini review. Chemical Engineering Journal, 2011, 170, 353-362.	12.7	280
12	Oxygen Atom Transfer in the Photocatalytic Oxidation of Alcohols by TiO ₂ : Oxygen Isotope Studies. Angewandte Chemie - International Edition, 2009, 48, 6081-6084.	13.8	276
13	Surface Modification of TiO ₂ by Phosphate:  Effect on Photocatalytic Activity and Mechanism Implication. Journal of Physical Chemistry C, 2008, 112, 5993-6001.	3.1	262
14	Selective Aerobic Oxidation Mediated by TiO ₂ Photocatalysis. Accounts of Chemical Research, 2014, 47, 355-363.	15.6	252
15	Fenton Degradation of Organic Compounds Promoted by Dyes under Visible Irradiation. Environmental Science & Technology, 2005, 39, 5810-5815.	10.0	241
16	Photocatalytic Aerobic Oxidation of Alcohols on TiO ₂ : The Acceleration Effect of a BrA,nsted Acid. Angewandte Chemie - International Edition, 2010, 49, 7976-7979.	13.8	224
17	Degradation of Dye Pollutants by Immobilized Polyoxometalate with H2O2under Visible-Light Irradiation. Environmental Science & Technology, 2005, 39, 8466-8474.	10.0	222
18	Photocatalysis by Titanium Dioxide and Polyoxometalate/TiO2Cocatalysts. Intermediates and Mechanistic Study. Environmental Science & Technology, 2004, 38, 329-337.	10.0	212

#	Article	IF	CITATIONS
19	Degradation of ciprofloxacin in aqueous bismuth oxybromide (BiOBr) suspensions under visible light irradiation: A direct hole oxidation pathway. Chemical Engineering Journal, 2015, 274, 290-297.	12.7	212
20	Electrocatalytic reduction of CO2 to CO by polypyridyl ruthenium complexes. Chemical Communications, 2011, 47, 12607.	4.1	209
21	Mechanism of TiO2-Assisted Photocatalytic Degradation of Dyes under Visible Irradiation:Â Photoelectrocatalytic Study by TiO2-Film Electrodes. Journal of Physical Chemistry B, 2005, 109, 21900-21907.	2.6	206
22	Photocatalytic C–C Coupling from Carbon Dioxide Reduction on Copper Oxide with Mixed-Valence Copper(I)/Copper(II). Journal of the American Chemical Society, 2021, 143, 2984-2993.	13.7	206
23	Nonmetal P-doped hematite photoanode with enhanced electron mobility and high water oxidation activity. Energy and Environmental Science, 2015, 8, 1231-1236.	30.8	202
24	Peroxymonosulfate activation by phosphate anion for organics degradation in water. Chemosphere, 2014, 117, 582-585.	8.2	186
25	Formation and Identification of Intermediates in the Visible-Light-Assisted Photodegradation of Sulforhodamine-B Dye in Aqueous TiO2Dispersion. Environmental Science & Technology, 2002, 36, 3604-3611.	10.0	184
26	Visibleâ€Lightâ€Induced Selective Photocatalytic Aerobic Oxidation of Amines into Imines on TiO ₂ . Chemistry - A European Journal, 2012, 18, 2624-2631.	3.3	182
27	Enhanced Photocatalytic Degradation of Dye Pollutants under Visible Irradiation on Al(III)-Modified TiO ₂ : Structure, Interaction, and Interfacial Electron Transfer. Environmental Science & Technology, 2008, 42, 308-314.	10.0	176
28	Oxidative Decomposition of Rhodamine B Dye in the Presence of VO2+and/or Pt(IV) under Visible Light Irradiation:Â N-Deethylation,Chromophore Cleavage, and Mineralization. Journal of Physical Chemistry B, 2006, 110, 26012-26018.	2.6	166
29	Rate-Limiting O–O Bond Formation Pathways for Water Oxidation on Hematite Photoanode. Journal of the American Chemical Society, 2018, 140, 3264-3269.	13.7	156
30	Photodegradation of Dye Pollutants Catalyzed by Porous K3PW12O40 under Visible Irradiation. Environmental Science & Technology, 2006, 40, 3965-3970.	10.0	155
31	TiO ₂ -Mediated Photocatalytic Debromination of Decabromodiphenyl Ether: Kinetics and Intermediates. Environmental Science & Technology, 2009, 43, 157-162.	10.0	145
32	Shape and SPR Evolution of Thorny Gold Nanoparticles Promoted by Silver Ions. Chemistry of Materials, 2007, 19, 1592-1600.	6.7	143
33	Fenton Degradation of Organic Pollutants in the Presence of Low-Molecular-Weight Organic Acids: Cooperative Effect of Quinone and Visible Light. Environmental Science & Technology, 2006, 40, 618-624.	10.0	133
34	Pivotal Role and Regulation of Proton Transfer in Water Oxidation on Hematite Photoanodes. Journal of the American Chemical Society, 2016, 138, 2705-2711.	13.7	132
35	Selective photocatalytic CO2 reduction in aerobic environment by microporous Pd-porphyrin-based polymers coated hollow TiO2. Nature Communications, 2022, 13, 1400.	12.8	131
36	Activation of Water in Titanium Dioxide Photocatalysis by Formation of Surface Hydrogen Bonds: An In Situ IR Spectroscopy Study. Angewandte Chemie - International Edition, 2015, 54, 5905-5909.	13.8	129

#	Article	IF	CITATIONS
37	Selective Oxidation of Arsenite by Peroxymonosulfate with High Utilization Efficiency of Oxidant. Environmental Science & Technology, 2014, 48, 3978-3985.	10.0	113
38	Photodegradation of dye pollutants on TiO2 nanoparticles dispersed in silicate under UV–VIS irradiation. Applied Catalysis B: Environmental, 2002, 37, 331-338.	20.2	112
39	α-Fe2O3 as a versatile and efficient oxygen atom transfer catalyst in combination with H2O as the oxygen source. Nature Catalysis, 2021, 4, 684-691.	34.4	112
40	Photocatalytic degradation of organic pollutants on surface anionized TiO2: Common effect of anions for high hole-availability by water. Applied Catalysis B: Environmental, 2013, 138-139, 212-218.	20.2	111
41	Enhanced Sonocatalytic Degradation of Azo Dyes by Au/TiO ₂ . Environmental Science & Technology, 2008, 42, 6173-6178.	10.0	110
42	Catalytic activity of iron species in layered clays for photodegradation of organic dyes under visible irradiation. Applied Catalysis B: Environmental, 2008, 77, 355-363.	20.2	108
43	Photochemical Aging of Beijing Urban PM _{2.5} : HONO Production. Environmental Science & Technology, 2018, 52, 6309-6316.	10.0	108
44	Photocatalysis: an overview of recent developments and technological advancements. Science China Chemistry, 2020, 63, 149-181.	8.2	107
45	Decomposition of Hydrogen Peroxide Driven by Photochemical Cycling of Iron Species in Clay. Environmental Science & Technology, 2006, 40, 4782-4787.	10.0	101
46	Selective aerobic oxidation of amines to imines by TiO2 photocatalysis in water. Chemical Communications, 2013, 49, 5034.	4.1	96
47	Opposite photocatalytic oxidation behaviors of BiOCl and TiO2: Direct hole transfer vs. indirect OH oxidation. Applied Catalysis B: Environmental, 2019, 241, 514-520.	20.2	95
48	Photoinduced Electron Storage in WO ₃ /TiO ₂ Nanohybrid Material in the Presence of Oxygen and Postirradiated Reduction of Heavy Metal Ions. Journal of Physical Chemistry C, 2009, 113, 13160-13165.	3.1	94
49	Effects of hydroxyl radicals and oxygen species on the 4-chlorophenol degradation by photoelectrocatalytic reactions with TiO2-film electrodes. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 208, 66-77.	3.9	91
50	TiO ₂ photocatalysis for C–C bond formation. Catalysis Science and Technology, 2018, 8, 2030-2045.	4.1	91
51	Photodegradation of dye pollutants on one-dimensional TiO2 nanoparticles under UV and visible irradiation. Journal of Molecular Catalysis A, 2007, 261, 131-138.	4.8	89
52	The Surfaceâ€Structure Sensitivity of Dioxygen Activation in the Anataseâ€Photocatalyzed Oxidation Reaction. Angewandte Chemie - International Edition, 2012, 51, 3188-3192.	13.8	89
53	Direct Fourâ€Electron Reduction of O ₂ to H ₂ O on TiO ₂ Surfaces by Pendant Proton Relay. Angewandte Chemie - International Edition, 2013, 52, 9686-9690.	13.8	89
54	A Half-Reaction Alternative to Water Oxidation: Chloride Oxidation to Chlorine Catalyzed by Silver Ion. Journal of the American Chemical Society, 2015, 137, 3193-3196.	13.7	83

#	Article	IF	CITATIONS
55	The vital role of surface Brönsted acid/base sites for the photocatalytic formation of free ·OH radicals. Applied Catalysis B: Environmental, 2020, 266, 118634.	20.2	83
56	Copperâ€Based Coordination Polymer Nanostructure for Visible Light Photocatalysis. Advanced Materials, 2016, 28, 9776-9781.	21.0	80
57	Pivotal Role of Fluorine in Tuning Band Structure and Visible‣ight Photocatalytic Activity of Nitrogenâ€Doped TiO ₂ . Chemistry - A European Journal, 2009, 15, 4765-4769.	3.3	74
58	Nickel-Coordinated Carbon Nitride as a Metallaphotoredox Platform for the Cross-Coupling of Aryl Halides with Alcohols. ACS Catalysis, 2020, 10, 15178-15185.	11.2	72
59	Role of elemental carbon in the photochemical aging of soot. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7717-7722.	7.1	70
60	Rapid photocatalytic debromination on TiO 2 with in-situ formed copper co-catalyst: Enhanced adsorption and visible light activity. Applied Catalysis B: Environmental, 2016, 194, 150-156.	20.2	67
61	Photocatalytic degradation of organic pollutants catalyzed by layered iron(II) bipyridine complex–clay hybrid under visible irradiation. Applied Catalysis B: Environmental, 2006, 65, 217-226.	20.2	65
62	Anatase TiO ₂ Mesocrystals Enclosed by (001) and (101) Facets: Synergistic Effects between Ti ³⁺ and Facets for Their Photocatalytic Performance. Chemistry - A European Journal, 2012, 18, 12584-12589.	3.3	65
63	Photodegradation of organic pollutants catalyzed by iron species under visible light irradiation. Physical Chemistry Chemical Physics, 2011, 13, 1957-1969.	2.8	62
64	Photochemical Cycling of Iron Mediated by Dicarboxylates: Special Effect of Malonate. Environmental Science & Technology, 2010, 44, 263-268.	10.0	60
65	Photoreductive Debromination of Decabromodiphenyl Ethers in the Presence of Carboxylates under Visible Light Irradiation. Environmental Science & amp; Technology, 2013, 47, 2370-2377.	10.0	60
66	Photochemical Oscillation of Fe(II)/Fe(III) Ratio Induced by Periodic Flux of Dissolved Organic Matter. Environmental Science & Technology, 2005, 39, 3121-3127.	10.0	58
67	Efficient Photoinduced Conversion of an Azo Dye on Hexachloroplatinate(IV)-Modified TiO2 Surfaces under Visible Light Irradiation—A Photosensitization Pathway. Chemistry - A European Journal, 2003, 9, 3292-3299.	3.3	57
68	Efficient degradation of chloramphenicol by zero-valent iron microspheres and new insights in mechanisms. Applied Catalysis B: Environmental, 2019, 256, 117876.	20.2	57
69	Interfacial Electron Transfer Dynamics for [Ru(bpy) ₂ (4,4â€2-PO ₃ H ₂) ₂ bpy)] ²⁺ Sensitized TiO ₂ in a Dye-Sensitized Photoelectrosynthesis Cell: Factors Influencing Efficiency and Dynamics Journal of Physical Chemistry C 2011 115 7081-7091	3.1	56
70	Stable hybrid perovskite MAPb(I1â^'Br)3 for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 253, 41-48.	20.2	56
71	An unprecedent hydride transfer pathway for selective photocatalytic reduction of CO2 to formic acid on TiO2. Applied Catalysis B: Environmental, 2021, 284, 119692.	20.2	56
72	A role of ionic liquid as an activator for efficient olefinepoxidation catalyzed by polyoxometalate. New Journal of Chemistry, 2008, 32, 283-289.	2.8	55

#	Article	lF	CITATIONS
73	Pathway of Oxygen Incorporation from O ₂ in TiO ₂ Photocatalytic Hydroxylation of Aromatics: Oxygen Isotope Labeling Studies. Chemistry - A European Journal, 2012, 18, 2030-2039.	3.3	55
74	The Formation of Ti–H Species at Interface Is Lethal to the Efficiency of TiO ₂ -Based Dye-Sensitized Devices. Journal of the American Chemical Society, 2017, 139, 2083-2089.	13.7	55
75	Hydrogen-Bond Bridged Water Oxidation on {001} Surfaces of Anatase TiO ₂ . Journal of Physical Chemistry C, 2017, 121, 2251-2257.	3.1	50
76	Photochemical Aging of Soot in the Aqueous Phase: Release of Dissolved Black Carbon and the Formation of ¹ O ₂ . Environmental Science & Technology, 2019, 53, 12311-12319.	10.0	50
77	Sonochemical Hydrogen Production Efficiently Catalyzed by Au/TiO ₂ . Journal of Physical Chemistry C, 2010, 114, 17728-17733.	3.1	48
78	Gradient FeO _{<i>x</i>} (PO ₄) _{<i>y</i>} Layer on Hematite Photoanodes: Novel Structure for Efficient Light-Driven Water Oxidation. ACS Applied Materials & Interfaces, 2014, 6, 12844-12851.	8.0	48
79	Grafting silica species on anatase surface for visible light photocatalytic activity. Energy and Environmental Science, 2011, 4, 2279.	30.8	46
80	Photochemical Coupling Reactions between Fe(III)/Fe(II), Cr(VI)/Cr(III), and Polycarboxylates: Inhibitory Effect of Cr Species. Environmental Science & Technology, 2008, 42, 7260-7266.	10.0	45
81	Photochemical Coupling of Iron Redox Reactions and Transformation of Low-Molecular-Weight Organic Matter. Journal of Physical Chemistry Letters, 2012, 3, 2044-2051.	4.6	44
82	TiO2 Photocatalysis for Transfer Hydrogenation. Molecules, 2019, 24, 330.	3.8	43
83	Determining the TiO ₂ -Photocatalytic Aryl-Ring-Opening Mechanism in Aqueous Solution Using Oxygen-18 Labeled O ₂ and H ₂ O. Journal of the American Chemical Society, 2014, 136, 8714-8721.	13.7	42
84	Light-assisted decomposition of dyes over iron-bearing soil clays in the presence of H2O2. Journal of Hazardous Materials, 2009, 168, 1246-1252.	12.4	41
85	Fe3+/Fe2+ cycling promoted by Ta3N5 under visible irradiation in Fenton degradation of organic pollutants. Applied Catalysis B: Environmental, 2007, 75, 256-263.	20.2	40
86	Photocatalytic debromination of preloaded decabromodiphenyl ether on the TiO2 surface in aqueous system. Chemosphere, 2012, 89, 420-425.	8.2	40
87	Unraveling the Photocatalytic Mechanisms on TiO2 Surfaces Using the Oxygen-18 Isotopic Label Technique. Molecules, 2014, 19, 16291-16311.	3.8	40
88	Anchored Oxygen-Donor Coordination to Iron for Photodegradation of Organic Pollutants. Environmental Science & Technology, 2007, 41, 5103-5107.	10.0	39
89	Photocatalytic Degradation of Aromatic Pollutants: A Pivotal Role of Conduction Band Electron in Distribution of Hydroxylated Intermediates. Environmental Science & (amp; Technology, 2012, 46, 5093-5099.	10.0	39
90	Fabrication of β-phase AgI and Bi2O3 co-decorated Bi2O2CO3 heterojunctions with enhanced photocatalytic performance. Journal of Colloid and Interface Science, 2019, 547, 1-13.	9.4	39

#	Article	IF	CITATIONS
91	Photocatalytic Oxidation of Organic Pollutants Catalyzed by an Iron Complex at Biocompatible pH Values: Using O ₂ as Main Oxidant in a Fenton-like Reaction. Journal of Physical Chemistry C, 2011, 115, 4089-4095.	3.1	38
92	Covalent Organic Frameworks: Promising Materials as Heterogeneous Catalysts for C-C Bond Formations. Catalysts, 2018, 8, 404.	3.5	38
93	An Unexplored O ₂ â€Involved Pathway for the Decarboxylation of Saturated Carboxylic Acids by TiO ₂ Photocatalysis: An Isotopic Probe Study. Chemistry - A European Journal, 2010, 16, 11859-11866.	3.3	37
94	Inverse Kinetic Solvent Isotope Effect in TiO ₂ Photocatalytic Dehalogenation of Nonâ€adsorbable Aromatic Halides: A Protonâ€Induced Pathway. Angewandte Chemie - International Edition, 2015, 54, 2052-2056.	13.8	37
95	Rapid, Photocatalytic, and Deep Debromination of Polybrominated Diphenyl Ethers on Pd–TiO ₂ : Intermediates and Pathways. Chemistry - A European Journal, 2014, 20, 11163-11170.	3.3	36
96	Enhanced Photocatalytic Simultaneous Removals of Cr(VI) and Bisphenol A over Co(II)-Modified TiO ₂ . Langmuir, 2019, 35, 276-283.	3.5	36
97	Essential Roles of Proton Transfer in Photocatalytic Redox Reactions. ChemCatChem, 2015, 7, 724-731.	3.7	35
98	Modulating the photocatalytic redox preferences between anatase TiO ₂ {001} and {101} surfaces. Chemical Communications, 2017, 53, 787-790.	4.1	35
99	Photooxidation of Dibenzothiophene and 4,6-Dimethyldibenzothiophene Sensitized byN-Methylquinolinium Tetrafluoborate:Â Mechanism and Intermediates Investigation. Journal of Physical Chemistry B, 2005, 109, 8270-8276.	2.6	34
100	Photocatalytic Degradation of Organic Pollutants by Co-Doped TiO2 Under Visible Light Irradiation. Current Organic Chemistry, 2010, 14, 630-644.	1.6	34
101	Spherical and Sheetlike Ag/AgCl Nanostructures: Interesting Photocatalysts with Unusual Facet-Dependent yet Substrate-Sensitive Reactivity. Langmuir, 2015, 31, 602-610.	3.5	33
102	Enhancement of photocatalytic decarboxylation on TiO2 by water-induced change in adsorption-mode. Applied Catalysis B: Environmental, 2018, 224, 376-382.	20.2	33
103	TiO2 Photocatalyzed C–H Bond Transformation for C–C Coupling Reactions. Catalysts, 2018, 8, 355.	3.5	32
104	Shape-Controlled Metal-Free Catalysts: Facet-Sensitive Catalytic Activity Induced by the Arrangement Pattern of Noncovalent Supramolecular Chains. ACS Nano, 2017, 11, 4866-4876.	14.6	31
105	Catalytic hydrodehalogenation over supported gold: Electron transfer versus hydride transfer. Applied Catalysis B: Environmental, 2018, 231, 262-268.	20.2	31
106	Photocatalytic activation of pyridine for addition reactions: an unconventional reaction feature between a photo-induced hole and electron on TiO ₂ . Chemical Communications, 2015, 51, 17451-17454.	4.1	30
107	Desulfurization of thiophenes in oils into H 2 SO 4 using molecular oxygen. Applied Catalysis B: Environmental, 2018, 235, 207-213.	20.2	28
108	Photocatalytic Hydrodehalogenation for the Removal of Halogenated Aromatic Contaminants. ChemCatChem, 2019, 11, 258-268.	3.7	28

#	Article	IF	CITATIONS
109	Photoinduced Release of Volatile Organic Compounds from Fatty Alcohols at the Air–Water Interface: The Role of Singlet Oxygen Photosensitized by a Carbonyl Group. Environmental Science & Technology, 2021, 55, 8683-8690.	10.0	28
110	Photocatalytic debromination of decabromodiphenyl ether by graphitic carbon nitride. Science China Chemistry, 2012, 55, 2532-2536.	8.2	27
111	Surfactant-additive-free synthesis of 3D anatase TiO2 hierarchical architectures with enhanced photocatalytic activity. RSC Advances, 2013, 3, 17559.	3.6	27
112	Controllable Synthesis of 3D Thorny Plasmonic Gold Nanostructures and Their Tunable Optical Properties. Journal of Physical Chemistry C, 2011, 115, 23256-23260.	3.1	26
113	Photocatalytic Dehydrogenation of Primary Alcohols: Selectivity Goes against Adsorptivity. ACS Omega, 2017, 2, 4161-4172.	3.5	26
114	Quantitative isotope measurements in heterogeneous photocatalysis and electrocatalysis. Energy and Environmental Science, 2020, 13, 2602-2617.	30.8	26
115	ortho-Dihydroxyl-9,10-anthraquinone dyes as visible-light sensitizers that exhibit a high turnover number for hydrogen evolution. Physical Chemistry Chemical Physics, 2014, 16, 6550-6554.	2.8	25
116	Control of Exposed Facet and Morphology of Anatase Crystals through TiO _{<i>x</i>} F _{<i>y</i>} Precursor Synthesis and Impact of the Facet on Crystal Phase Transition. Chemistry of Materials, 2014, 26, 1014-1018.	6.7	25
117	Nitrate-Enhanced Oxidation of SO ₂ on Mineral Dust: A Vital Role of a Proton. Environmental Science & Technology, 2019, 53, 10139-10145.	10.0	25
118	Rapid proton exchange between surface bridging hydroxyls and adsorbed molecules on TiO2. Applied Catalysis B: Environmental, 2020, 277, 119234.	20.2	25
119	Photocatalytic activation of C-Br bond on facet-dependent BiOCl with oxygen vacancies. Applied Surface Science, 2021, 548, 149243.	6.1	25
120	An Efficient Anthraquinone–Resin Hybrid Coâ€Catalyst for Fentonâ€Like Reactions: Acceleration of the Iron Cycle Using a Quinone Cycle under Visibleâ€Light Irradiation. Chemistry - an Asian Journal, 2011, 6, 2264-2268.	3.3	24
121	Supported noble metal nanoparticles as photo/sono-catalysts for synthesis of chemicals and degradation of pollutants. Science China Chemistry, 2011, 54, 887-897.	8.2	24
122	Photoinduced Uptake and Oxidation of SO ₂ on Beijing Urban PM _{2.5} . Environmental Science & Technology, 2020, 54, 14868-14876.	10.0	24
123	The Key Role of Sulfate in the Photochemical Renoxification on Real PM _{2.5} . Environmental Science & Technology, 2020, 54, 3121-3128.	10.0	24
124	Concerted Twoâ€Electron Transfer and High Selectivity of TiO ₂ in Photocatalyzed Deoxygenation of Epoxides. Angewandte Chemie - International Edition, 2013, 52, 12636-12640.	13.8	22
125	Weak-Bond-Based Photoreduction of Polybrominated Diphenyl Ethers on Graphene in Water. ACS Sustainable Chemistry and Engineering, 2018, 6, 6711-6717.	6.7	22
126	Carbon Gels-Modified TiO2: Promising Materials for Photocatalysis Applications. Materials, 2020, 13, 1734.	2.9	22

#	Article	IF	CITATIONS
127	Visible-light-driven photocatalytic degradation of microcystin-LR by Bi-doped TiO2. Research on Chemical Intermediates, 2011, 37, 47-60.	2.7	21
128	Iron(iii)-mediated photocatalytic selective substitution of aryl bromine by chlorine with high chloride utilization efficiency. Chemical Communications, 2014, 50, 2344.	4.1	21
129	Doping-Promoted Solar Water Oxidation on Hematite Photoanodes. Molecules, 2016, 21, 868.	3.8	21
130	Enhanced photoreduction degradation of polybromodiphenyl ethers with Fe ₃ O ₄ -g-C ₃ N ₄ under visible light irradiation. RSC Advances, 2018, 8, 10914-10921.	3.6	20
131	A new type of covalent-functional graphene donor-acceptor hybrid and its improved photoelectrochemical performance. Science China Chemistry, 2011, 54, 1622-1626.	8.2	19
132	Sunlight-driven Ag–AgCl1–xBrx photocatalysts: enhanced catalytic performances via continuous bandgap-tuning and morphology selection. Physical Chemistry Chemical Physics, 2013, 15, 12709.	2.8	18
133	Synthetic Approaches for C-N Bonds by TiO2 Photocatalysis. Frontiers in Chemistry, 2019, 7, 635.	3.6	18
134	Ligand directed debromination of tetrabromodiphenyl ether mediated by nickel under visible irradiation. Environmental Science: Nano, 2019, 6, 1585-1593.	4.3	18
135	Suppressing toxic intermediates during photocatalytic degradation of glyphosate by controlling adsorption modes. Applied Catalysis B: Environmental, 2021, 299, 120671.	20.2	18
136	Silver Iodide Microstructures of a Uniform Towerlike Shape: Morphology Purification via a Chemical Dissolution, Simultaneously Boosted Catalytic Durability, and Enhanced Catalytic Performances. ACS Applied Materials & Interfaces, 2014, 6, 4160-4169.	8.0	17
137	Tailored Porphyrin Assembly at the Oil–Aqueous Interface Based on the Receding of Threeâ€Phase Contact Line of Droplet Template. Advanced Materials Interfaces, 2015, 2, 1400365.	3.7	17
138	MoSx co-catalytic activation of H2O2 by heterogeneous hemin catalyst under visible light irradiation. Journal of Colloid and Interface Science, 2019, 557, 301-310.	9.4	17
139	High-performance natural-sunlight-driven Ag/AgCl photocatalysts with a cube-like morphology and blunt edges <i>via</i> a bola-type surfactant-assisted synthesis. Physical Chemistry Chemical Physics, 2020, 22, 3940-3952.	2.8	17
140	Molecular-level understanding of the deactivation pathways during methanol photo-reforming on Pt-decorated TiO2. Applied Catalysis B: Environmental, 2020, 272, 118980.	20.2	17
141	Visible-light-driven semihydrogenation of alkynes via proton reduction over carbon nitride supported nickel. Applied Catalysis B: Environmental, 2022, 304, 121004.	20.2	17
142	H2O-Involved Two-Electron Pathway for Photooxidation of Aldehydes on TiO2: An Isotope Labeling Study. Environmental Science & Technology, 2015, 49, 3024-3031.	10.0	16
143	Mechanistic Studies of TiO ₂ Photocatalysis and Fenton Degradation of Hydrophobic Aromatic Pollutants in Water. Chemistry - an Asian Journal, 2016, 11, 3568-3574.	3.3	14
144	Distinct photocatalytic charges separation pathway on CuOx modified rutile and anatase TiO2 under visible light. Applied Catalysis B: Environmental, 2022, 300, 120735.	20.2	14

#	Article	IF	CITATIONS
145	An Unexpected Fluctuating Reactivity for Odd and Even Carbon Numbers in the TiO ₂ â€Based Photocatalytic Decarboxylation of C2â€C6 Dicarboxylic Acids. Chemistry - A European Journal, 2014, 20, 1861-1870.	3.3	13
146	Clay-based SiO2 as active support of gold nanoparticles for CO oxidation catalyst: Pivotal role of residual Al. Catalysis Communications, 2013, 35, 72-75.	3.3	12
147	Visible-light-driven Ag/AgCl plasmonic photocatalysts via a surfactant-assisted protocol: enhanced catalytic performance by morphology evolution from near-spherical to 1D structures. Physical Chemistry Chemical Physics, 2015, 17, 25182-25190.	2.8	12
148	Facial boron incorporation in hematite photoanode for enhanced photoelectrochemical water oxidation. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 290-297.	3.9	12
149	Enhanced Photochemical Volatile Organic Compounds Release from Fatty Acids by Surface-Enriched Fe(III). Environmental Science & Technology, 2020, 54, 13448-13457.	10.0	12
150	Fluorine-doped BiVO4 photocatalyst: Preferential cleavage of Câ^'N bond for green degradation of glyphosate. Journal of Environmental Sciences, 2023, 127, 60-68.	6.1	12
151	Mechanistic insights into the photocatalytic reduction of nitric oxide to nitrogen on oxygen-deficient quasi-two-dimensional bismuth-based perovskites. Environmental Science: Nano, 2022, 9, 1453-1465.	4.3	11
152	Photochemical production or depletion of hydrogen peroxide controlled by different electron transfer pathways in methyl viologen intercalated clays. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 183, 31-34.	3.9	10
153	Effect of dye-metal complexation on photocatalytic decomposition of the dyes on TiO2 under visible irradiation. Journal of Environmental Sciences, 2009, 21, 263-267.	6.1	10
154	Photo-electrochemical water splitting system with three-layer n-type organic semiconductor film as photoanode under visible irradiation. Science China Chemistry, 2012, 55, 1953-1958.	8.2	10
155	Localized Tilll mediated dissociative electron transfer for carbon halogen bond activation on TiO2. Applied Catalysis B: Environmental, 2017, 219, 322-328.	20.2	10
156	Highly oxygenated organic molecules with high unsaturation formed upon photochemical aging of soot. CheM, 2022, 8, 2688-2699.	11.7	10
157	Selective activation of secondary C–H bonds by an iron catalyst: insights into possibilities created by the use of a carboxyl-containing bipyridine ligand. New Journal of Chemistry, 2013, 37, 3267.	2.8	9
158	Mechanism of photocatalytic oxidation of guanine by BiOBr under UV irradiation. Catalysis Communications, 2014, 48, 65-68.	3.3	7
159	Photochemical aging of Beijing urban PM2.5: Production of oxygenated volatile organic compounds. Science of the Total Environment, 2020, 743, 140751.	8.0	7
160	Light-driven activation of carbon-halogen bonds by readily available amines for photocatalytic hydrodehalogenation. Chinese Journal of Catalysis, 2020, 41, 1474-1479.	14.0	7
161	Self-assembled BiVO4 mesocrystals for efficient photocatalytic decontamination of microcystin-LR. Environmental Chemistry Letters, 2022, 20, 1595-1601.	16.2	7
162	Crucial Effect of Ti–H Species Generated in the Visible-Light-Driven Transformations: Slowed-Down Proton-Coupled Electron Transfer. Journal of Physical Chemistry Letters, 2020, 11, 3941-3946.	4.6	6

#	Article	IF	CITATIONS
163	Identifying the active photocatalytic H2-production sites on TiO2-supported Pt nanoparticles by the in-situ infrared spectrum of CO. Science China Chemistry, 2020, 63, 354-360.	8.2	6
164	UV-Assisted Removal of Inactive Peroxide Species for Sustained Epoxidation of Cyclooctene on Anatase TiO2. Chemistry - A European Journal, 2014, 20, 6277-6282.	3.3	5
165	A powerful azomethine ylide route mediated by TiO ₂ photocatalysis for the preparation of polysubstituted imidazolidines. Organic and Biomolecular Chemistry, 2021, 19, 2192-2197.	2.8	5
166	Photochemical Synthesis of Selenium Nanospheres of Tunable Size and Colloidal Stability with Simple Diketones. Langmuir, 2021, 37, 9793-9801.	3.5	5
167	In Situ Observation of Hot Carrier Transfer at Plasmonic Au/Metalâ€Organic Frameworks (MOFs) Interfaces. Chemistry - A European Journal, 2022, 28, .	3.3	5
168	Aqueous Oxidations Started by TiO ₂ Photoinduced Holes Can Be a Rateâ€Đetermining Step. Chemistry - an Asian Journal, 2017, 12, 2048-2051.	3.3	4
169	Photoinduced release of odorous volatile organic compounds from aqueous pollutants: The role of reactive oxygen species in increasing risk during cross-media transformation. Science of the Total Environment, 2022, 822, 153397.	8.0	4
170	Efficient degradation of dye pollutants using dioxygen mediated by iron(II) 2,2′-bipyridine loaded layered clay catalyst under visible irradiation. Science in China Series B: Chemistry, 2006, 49, 407-410.	0.8	3
171	Noble-metal-free TiO2 photocatalysis for selective C reduction of α,β-enones by CF3SO3H modification. Catalysis Science and Technology, 2020, 10, 4917-4922.	4.1	3
172	Interfacial proton-coupled electron transfer in metal oxide semiconductor photocatalysis. Research on Chemical Intermediates, 2017, 43, 4997-5009.	2.7	2
173	An all-in-one approach for synthesis and functionalization of nano colloidal gold with acetylacetone. Nanotechnology, 2022, 33, 075605.	2.6	2
174	Zeolite NaY-mediated oxidation of dyes with H2O2: unique heterogeneous non-transition metal center cleavage of H2O2 under visible light irradiation. Science in China Series B: Chemistry, 2007, 50, 770-775.	0.8	1
175	Inside Cover: Photocatalytic Aerobic Oxidation of Alcohols on TiO ₂ : The Acceleration Effect of a BrAnsted Acid (Angew. Chem. Int. Ed. 43/2010). Angewandte Chemie - International Edition, 2010, 49, 7818-7818.	13.8	1
176	An Unexpected Fluctuating Reactivity for Odd and Even Carbon Numbers in the TiO2-Based Photocatalytic Decarboxylation of C2-C6 Dicarboxylic Acids. Chemistry - A European Journal, 2014, 20, 1772-1772.	3.3	1
177	Frontispiece: Inverse Kinetic Solvent Isotope Effect in TiO2Photocatalytic Dehalogenation of Non-adsorbable Aromatic Halides: A Proton-Induced Pathway. Angewandte Chemie - International Edition, 2015, 54, n/a-n/a.	13.8	0
178	Frontispiz: Inverse Kinetic Solvent Isotope Effect in TiO2Photocatalytic Dehalogenation of Non-adsorbable Aromatic Halides: A Proton-Induced Pathway. Angewandte Chemie, 2015, 127, n/a-n/a.	2.0	0