List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9112928/publications.pdf Version: 2024-02-01

		3159	4645
326	33,210	92	170
papers	citations	h-index	g-index
335	335	335	18430
all docs	docs citations	times ranked	citing authors

IÃI/ DOEN JANEK

#	Article	IF	CITATIONS
1	A solid future for battery development. Nature Energy, 2016, 1, .	39.5	2,319
2	New horizons for inorganic solid state ion conductors. Energy and Environmental Science, 2018, 11, 1945-1976.	30.8	894
3	A rechargeable room-temperature sodium superoxide (NaO2) battery. Nature Materials, 2013, 12, 228-232.	27.5	706
4	Benchmarking the performance of all-solid-state lithium batteries. Nature Energy, 2020, 5, 259-270.	39.5	662
5	Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes. Chemistry of Materials, 2017, 29, 5574-5582.	6.7	655
6	Tuning Transition Metal Oxide–Sulfur Interactions for Long Life Lithium Sulfur Batteries: The "Goldilocks―Principle. Advanced Energy Materials, 2016, 6, 1501636.	19.5	623
7	Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li ₁₀ GeP ₂ S ₁₂ at the Lithium Metal Anode. Chemistry of Materials, 2016, 28, 2400-2407.	6.7	619
8	Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12― Physical Chemistry Chemical Physics, 2011, 13, 19378.	2.8	559
9	Recent Progress and Perspective in Electrode Materials for Kâ€ŀon Batteries. Advanced Energy Materials, 2018, 8, 1702384.	19.5	549
10	Chemo-mechanical expansion of lithium electrode materials – on the route to mechanically optimized all-solid-state batteries. Energy and Environmental Science, 2018, 11, 2142-2158.	30.8	512
11	Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies. Energy and Environmental Science, 2011, 4, 3342.	30.8	491
12	Anisotropic Lattice Strain and Mechanical Degradation of High- and Low-Nickel NCM Cathode Materials for Li-Ion Batteries. Journal of Physical Chemistry C, 2017, 121, 3286-3294.	3.1	472
13	Physicochemical Concepts of the Lithium Metal Anode in Solid-State Batteries. Chemical Reviews, 2020, 120, 7745-7794.	47.7	468
14	TEMPO: A Mobile Catalyst for Rechargeable Li-O ₂ Batteries. Journal of the American Chemical Society, 2014, 136, 15054-15064.	13.7	466
15	Toward a Fundamental Understanding of the Lithium Metal Anode in Solid-State Batteries—An Electrochemo-Mechanical Study on the Garnet-Type Solid Electrolyte Li _{6.25} Al _{0.25} La ₃ Zr ₂ O ₁₂ . ACS Applied Materials &: Interfaces. 2019. 11. 14463-14477.	8.0	461
16	Influence of Lattice Polarizability on the Ionic Conductivity in the Lithium Superionic Argyrodites Li ₆ PS ₅ X (X = Cl, Br, I). Journal of the American Chemical Society, 2017, 139, 10909-10918.	13.7	446
17	Interphase formation on lithium solid electrolytes—An in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ionics, 2015, 278, 98-105.	2.7	428
18	Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes. Journal of Physical Chemistry C, 2013, 117, 21064-21074.	3.1	411

#	Article	IF	CITATIONS
19	Fast Charging of Lithiumâ€lon Batteries: A Review of Materials Aspects. Advanced Energy Materials, 2021, 11, 2101126.	19.5	407
20	There and Back Again—The Journey of LiNiO ₂ as a Cathode Active Material. Angewandte Chemie - International Edition, 2019, 58, 10434-10458.	13.8	400
21	Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte. Solid State Ionics, 2016, 286, 24-33.	2.7	379
22	Interfacial Processes and Influence of Composite Cathode Microstructure Controlling the Performance of All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2017, 9, 17835-17845.	8.0	353
23	Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts. Nature Chemistry, 2016, 8, 426-434.	13.6	340
24	Chemical, Structural, and Electronic Aspects of Formation and Degradation Behavior on Different Length Scales of Niâ€Rich NCM and Liâ€Rich HEâ€NCM Cathode Materials in Liâ€Ion Batteries. Advanced Materials, 2019, 31, e1900985.	21.0	319
25	Lithium-Metal Growth Kinetics on LLZO Garnet-Type Solid Electrolytes. Joule, 2019, 3, 2030-2049.	24.0	292
26	The Detrimental Effects of Carbon Additives in Li ₁₀ GeP ₂ S ₁₂ -Based Solid-State Batteries. ACS Applied Materials & Interfaces, 2017, 9, 35888-35896.	8.0	257
27	Volume Changes of Graphite Anodes Revisited: A Combined <i>Operando</i> X-ray Diffraction and <i>In Situ</i> Pressure Analysis Study. Journal of Physical Chemistry C, 2018, 122, 8829-8835.	3.1	256
28	A comprehensive study on the cell chemistry of the sodium superoxide (NaO2) battery. Physical Chemistry Chemical Physics, 2013, 15, 11661.	2.8	253
29	Degradation Mechanisms at the Li ₁₀ GeP ₂ S ₁₂ /LiCoO ₂ Cathode Interface in an All-Solid-State Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2018, 10, 22226-22236.	8.0	250
30	High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nature Energy, 2022, 7, 83-93.	39.5	249
31	Visualization of the Interfacial Decomposition of Composite Cathodes in Argyrodite-Based All-Solid-State Batteries Using Time-of-Flight Secondary-Ion Mass Spectrometry. Chemistry of Materials, 2019, 31, 3745-3755.	6.7	246
32	Charge-Transfer-Induced Lattice Collapse in Ni-Rich NCM Cathode Materials during Delithiation. Journal of Physical Chemistry C, 2017, 121, 24381-24388.	3.1	242
33	Diffusion Limitation of Lithium Metal and Li–Mg Alloy Anodes on LLZO Type Solid Electrolytes as a Function of Temperature and Pressure. Advanced Energy Materials, 2019, 9, 1902568.	19.5	240
34	Polycrystalline and Single Crystalline NCM Cathode Materials—Quantifying Particle Cracking, Active Surface Area, and Lithium Diffusion. Advanced Energy Materials, 2021, 11, 2003400.	19.5	237
35	Between Scylla and Charybdis: Balancing Among Structural Stability and Energy Density of Layered NCM Cathode Materials for Advanced Lithium-Ion Batteries. Journal of Physical Chemistry C, 2017, 121, 26163-26171.	3.1	233
36	Lithium ion conductivity in Li ₂ S–P ₂ S ₅ glasses – building units and local structure evolution during the crystallization of superionic conductors Li ₃ PS ₄ , Li ₇ P ₃ S11 and Li ₄ P ₂ S ₇ . Journal of Materials Chemistry A, 2017, 5, 18111-18119.	10.3	233

#	Article	IF	CITATIONS
37	(Electro)chemical expansion during cycling: monitoring the pressure changes in operating solid-state lithium batteries. Journal of Materials Chemistry A, 2017, 5, 9929-9936.	10.3	222
38	On the Functionality of Coatings for Cathode Active Materials in Thiophosphateâ€Based Allâ€Solidâ€State Batteries. Advanced Energy Materials, 2019, 9, 1900626.	19.5	221
39	Electrochemical stability of non-aqueous electrolytes for sodium-ion batteries and their compatibility with Na _{0.7} CoO ₂ . Physical Chemistry Chemical Physics, 2014, 16, 1987-1998.	2.8	217
40	Comprehensive Investigation of the Na ₃ V ₂ (PO ₄) ₂ F ₃ –NaV ₂ (PO< System by Operando High Resolution Synchrotron X-ray Diffraction. Chemistry of Materials, 2015, 27, 3009-3020.	sub>46.7	>) ₂₂₁₇
41	Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors	206, 7.8	214
42	Systematical electrochemical study on the parasitic shuttle-effect inÂlithium-sulfur-cells at different temperatures and different rates. Journal of Power Sources, 2014, 259, 289-299.	7.8	212
43	Redox-active cathode interphases in solid-state batteries. Journal of Materials Chemistry A, 2017, 5, 22750-22760.	10.3	206
44	The critical role of lithium nitrate in the gas evolution of lithium–sulfur batteries. Energy and Environmental Science, 2016, 9, 2603-2608.	30.8	202
45	Impact of Cathode Material Particle Size on the Capacity of Bulk-Type All-Solid-State Batteries. ACS Energy Letters, 2018, 3, 992-996.	17.4	201
46	Interfacial Reactivity Benchmarking of the Sodium Ion Conductors Na ₃ PS ₄ and Sodium β-Alumina for Protected Sodium Metal Anodes and Sodium All-Solid-State Batteries. ACS Applied Materials & Interfaces, 2016, 8, 28216-28224.	8.0	195
47	Na ₃ V ₂ (PO ₄) ₂ F ₃ Revisited: A High-Resolution Diffraction Study. Chemistry of Materials, 2014, 26, 4238-4247.	6.7	193
48	Origin of Carbon Dioxide Evolved during Cycling of Nickel-Rich Layered NCM Cathodes. ACS Applied Materials & Interfaces, 2018, 10, 38892-38899.	8.0	193
49	Toward Silicon Anodes for Next-Generation Lithium Ion Batteries: A Comparative Performance Study of Various Polymer Binders and Silicon Nanopowders. ACS Applied Materials & Interfaces, 2013, 5, 7299-7307.	8.0	192
50	On the Thermodynamics, the Role of the Carbon Cathode, and the Cycle Life of the Sodium Superoxide (NaO ₂) Battery. Advanced Energy Materials, 2014, 4, 1301863.	19.5	184
51	Structural Insights and 3D Diffusion Pathways within the Lithium Superionic Conductor Li ₁₀ GeP ₂ S ₁₂ . Chemistry of Materials, 2016, 28, 5905-5915.	6.7	176
52	Stabilizing Effect of a Hybrid Surface Coating on a Ni-Rich NCM Cathode Material in All-Solid-State Batteries. Chemistry of Materials, 2019, 31, 9664-9672.	6.7	174
53	Design Strategies to Enable the Efficient Use of Sodium Metal Anodes in Highâ€Energy Batteries. Advanced Materials, 2020, 32, e1903891.	21.0	173
54	Stabilization of cubic lithium-stuffed garnets of the type "Li7La3Zr2O12―by addition of gallium. Journal of Power Sources, 2013, 225, 13-19.	7.8	167

#	Article	IF	CITATIONS
55	A chemically driven insulator–metal transition in non-stoichiometric and amorphous gallium oxide. Nature Materials, 2008, 7, 391-398.	27.5	166
56	Bone formation induced by strontium modified calcium phosphate cement in critical-size metaphyseal fracture defects in ovariectomized rats. Biomaterials, 2013, 34, 8589-8598.	11.4	161
57	Thermodynamics and cell chemistry of room temperature sodium/sulfur cells with liquid and liquid/solid electrolyte. Journal of Power Sources, 2013, 243, 758-765.	7.8	160
58	Additional Sodium Insertion into Polyanionic Cathodes for Higherâ€Energy Naâ€Ion Batteries. Advanced Energy Materials, 2017, 7, 1700514.	19.5	157
59	How To Improve Capacity and Cycling Stability for Next Generation Li–O ₂ Batteries: Approach with a Solid Electrolyte and Elevated Redox Mediator Concentrations. ACS Applied Materials & Interfaces, 2016, 8, 7756-7765.	8.0	151
60	Phase Transformation Behavior and Stability of LiNiO ₂ Cathode Material for Liâ€ion Batteries Obtained from Inâ€Situ Gas Analysis and Operando Xâ€Ray Diffraction. ChemSusChem, 2019, 12, 2240-2250.	6.8	146
61	Microstructural Modeling of Composite Cathodes for All-Solid-State Batteries. Journal of Physical Chemistry C, 2019, 123, 1626-1634.	3.1	139
62	<i>In Situ</i> Monitoring of Fast Li-Ion Conductor Li ₇ P ₃ S ₁₁ Crystallization Inside a Hot-Press Setup. Chemistry of Materials, 2016, 28, 6152-6165.	6.7	138
63	Experimental Assessment of the Practical Oxidative Stability of Lithium Thiophosphate Solid Electrolytes. Chemistry of Materials, 2019, 31, 8328-8337.	6.7	138
64	Lithiumâ€Metal Anode Instability of the Superionic Halide Solid Electrolytes and the Implications for Solidâ€State Batteries. Angewandte Chemie - International Edition, 2021, 60, 6718-6723.	13.8	137
65	Benchmarking Anode Concepts: The Future of Electrically Rechargeable Zinc–Air Batteries. ACS Energy Letters, 2019, 4, 1287-1300.	17.4	136
66	Influence of NCM Particle Cracking on Kinetics of Lithium-Ion Batteries with Liquid or Solid Electrolyte. Journal of the Electrochemical Society, 2020, 167, 100532.	2.9	134
67	A New Strategy for Highâ€Voltage Cathodes for Kâ€ŀon Batteries: Stoichiometric KVPO ₄ F. Advanced Energy Materials, 2018, 8, 1801591.	19.5	130
68	The interplay between thermodynamics and kinetics in the solid-state synthesis of layered oxides. Nature Materials, 2020, 19, 1088-1095.	27.5	129
69	Side by Side Battery Technologies with Lithiumâ€ŀon Based Batteries. Advanced Energy Materials, 2020, 10, 2000089.	19.5	127
70	Influence of Carbon Additives on the Decomposition Pathways in Cathodes of Lithium Thiophosphate-Based All-Solid-State Batteries. Chemistry of Materials, 2020, 32, 6123-6136.	6.7	126
71	Modeling Effective Ionic Conductivity and Binder Influence in Composite Cathodes for All-Solid-State Batteries. ACS Applied Materials & Interfaces, 2020, 12, 12821-12833.	8.0	126
72	Evolution of Li ₂ O ₂ Growth and Its Effect on Kinetics of Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2014, 6, 12083-12092.	8.0	125

#	Article	IF	CITATIONS
73	Employing Plasmas as Gaseous Electrodes at the Free Surface of Ionic Liquids: Deposition of Nanocrystalline Silver Particles. ChemPhysChem, 2007, 8, 50-53.	2.1	123
74	From Liquid- to Solid-State Batteries: Ion Transfer Kinetics of Heteroionic Interfaces. Electrochemical Energy Reviews, 2020, 3, 221-238.	25.5	117
75	The Working Principle of a Li ₂ CO ₃ /LiNbO ₃ Coating on NCM for Thiophosphate-Based All-Solid-State Batteries. Chemistry of Materials, 2021, 33, 2110-2125.	6.7	116
76	Interphase Formation of PEO ₂₀ :LiTFSI–Li ₆ PS ₅ Cl Composite Electrolytes with Lithium Metal. ACS Applied Materials & Interfaces, 2020, 12, 11713-11723.	8.0	114
77	Observation of Chemomechanical Failure and the Influence of Cutoff Potentials in All-Solid-State Li–S Batteries. Chemistry of Materials, 2019, 31, 2930-2940.	6.7	112
78	Understanding the fundamentals of redox mediators in Li–O ₂ batteries: a case study on nitroxides. Physical Chemistry Chemical Physics, 2015, 17, 31769-31779.	2.8	111
79	Local Structural Investigations, Defect Formation, and Ionic Conductivity of the Lithium Ionic Conductor Li ₄ P ₂ S ₆ . Chemistry of Materials, 2016, 28, 8764-8773.	6.7	111
80	The Fast Charge Transfer Kinetics of the Lithium Metal Anode on the Garnetâ€Type Solid Electrolyte Li _{6.25} Al _{0.25} La ₃ Zr ₂ O ₁₂ . Advanced Energy Materials, 2020, 10, 2000945.	19.5	110
81	LiPON thin films with high nitrogen content for application in lithium batteries and electrochromic devices prepared by RF magnetron sputtering. Solid State Ionics, 2015, 282, 63-69.	2.7	108
82	One―or Twoâ€Electron Transfer? The Ambiguous Nature of the Discharge Products in Sodium–Oxygen Batteries. Angewandte Chemie - International Edition, 2016, 55, 4640-4649.	13.8	108
83	Investigation into Mechanical Degradation and Fatigue of High-Ni NCM Cathode Material: A Long-Term Cycling Study of Full Cells. ACS Applied Energy Materials, 2019, 2, 7375-7384.	5.1	106
84	In situ study of electrochemical activation and surface segregation of the SOFC electrode material La _{0.75} Sr _{0.25} Cr _{0.5} Mn _{0.5} O _{3±δ} . Physical Chemistry Chemical Physics, 2012, 14, 751-758.	2.8	105
85	Gas Evolution in Operating Lithium-Ion Batteries Studied In Situ by Neutron Imaging. Scientific Reports, 2015, 5, 15627.	3.3	104
86	Gas Evolution in All-Solid-State Battery Cells. ACS Energy Letters, 2018, 3, 2539-2543.	17.4	100
87	Pressure Dynamics in Metal–Oxygen (Metal–Air) Batteries: A Case Study on Sodium Superoxide Cells. Journal of Physical Chemistry C, 2014, 118, 1461-1471.	3.1	99
88	Synthesis, Structural Characterization, and Lithium Ion Conductivity of the Lithium Thiophosphate Li ₂ P ₂ S ₆ . Inorganic Chemistry, 2017, 56, 6681-6687.	4.0	98
89	Li ₄ PS ₄ I: A Li ⁺ Superionic Conductor Synthesized by a Solvent-Based Soft Chemistry Approach. Chemistry of Materials, 2017, 29, 1830-1835.	6.7	97
90	The Critical Role of Fluoroethylene Carbonate in the Gassing of Silicon Anodes for Lithium-Ion Batteries. ACS Energy Letters, 2017, 2, 2228-2233.	17.4	97

#	Article	IF	CITATIONS
91	Editors' Choice—Quantifying the Impact of Charge Transport Bottlenecks in Composite Cathodes of All-Solid-State Batteries. Journal of the Electrochemical Society, 2021, 168, 040537.	2.9	97
92	Properties of the Interphase Formed between Argyrodite-Type Li ₆ PS ₅ Cl and Polymer-Based PEO ₁₀ :LiTFSI. ACS Applied Materials & Interfaces, 2019, 11, 42186-42196.	8.0	95
93	In situ study of activation and de-activation of LSM fuel cell cathodes – Electrochemistry and surface analysis of thin-film electrodes. Journal of Catalysis, 2012, 294, 79-88.	6.2	92
94	High Rate Performance for Carbonâ€Coated Na ₃ V ₂ (PO ₄) ₂ F ₃ in Naâ€ion Batteries. Small Methods, 2019, 3, 1800215.	8.6	92
95	Discharge and Charge Reaction Paths in Sodium–Oxygen Batteries: Does NaO ₂ Form by Direct Electrochemical Growth or by Precipitation from Solution?. Journal of Physical Chemistry C, 2015, 119, 22778-22786.	3.1	91
96	Gas Evolution in LiNi _{0.5} Mn _{1.5} O ₄ /Graphite Cells Studied In Operando by a Combination of Differential Electrochemical Mass Spectrometry, Neutron Imaging, and Pressure Measurements. Analytical Chemistry, 2016, 88, 2877-2883.	6.5	91
97	Effect of Low-Temperature Al2O3 ALD Coating on Ni-Rich Layered Oxide Composite Cathode on the Long-Term Cycling Performance of Lithium-Ion Batteries. Scientific Reports, 2019, 9, 5328.	3.3	91
98	Li ₂ ZrO ₃ -Coated NCM622 for Application in Inorganic Solid-State Batteries: Role of Surface Carbonates in the Cycling Performance. ACS Applied Materials & Interfaces, 2020, 12, 57146-57154.	8.0	90
99	Online Continuous Flow Differential Electrochemical Mass Spectrometry with a Realistic Battery Setup for High-Precision, Long-Term Cycling Tests. Analytical Chemistry, 2015, 87, 5878-5883.	6.5	89
100	Solid-state batteries enter EV fray. MRS Bulletin, 2014, 39, 1046-1047.	3.5	87
101	Defect Chemistry of Oxide Nanomaterials with High Surface Area: Ordered Mesoporous Thin Films of the Oxygen Storage Catalyst CeO ₂ –ZrO ₂ . ACS Nano, 2013, 7, 2999-3013.	14.6	85
102	In-Depth Characterization of Lithium-Metal Surfaces with XPS and ToF-SIMS: Toward Better Understanding of the Passivation Layer. Chemistry of Materials, 2021, 33, 859-867.	6.7	82
103	The Interface between Li6.5La3Zr1.5Ta0.5O12 and Liquid Electrolyte. Joule, 2020, 4, 101-108.	24.0	81
104	Nitrogen-doped carbon fibers and membranes by carbonization of electrospun poly(ionic liquid)s. Polymer Chemistry, 2011, 2, 1654.	3.9	79
105	Multiple phases in the ε-VPO ₄ O–LiVPO ₄ O–Li ₂ VPO ₄ O system: a combined solid state electrochemistry and diffraction structural study. Journal of Materials Chemistry A, 2014, 2, 10182-10192.	10.3	79
106	The Role of Intragranular Nanopores in Capacity Fade of Nickel-Rich Layered Li(Ni _{1–<i>x</i>–<i>y</i>} Co _{<i>x</i>} Mn _{<i>y</i>})O ₂ Cathode Materials. ACS Nano, 2019, 13, 10694-10704.	14.6	79
107	Room temperature, liquid-phase Al ₂ O ₃ surface coating approach for Ni-rich layered oxide cathode material. Chemical Communications, 2019, 55, 2174-2177.	4.1	79
108	Reversible Compositional Control of Oxide Surfaces by Electrochemical Potentials. Journal of Physical Chemistry Letters, 2012, 3, 40-44.	4.6	78

#	Article	IF	CITATIONS
109	Guidelines for All-Solid-State Battery Design and Electrode Buffer Layers Based on Chemical Potential Profile Calculation. ACS Applied Materials & amp; Interfaces, 2019, 11, 19968-19976.	8.0	77
110	Na ₃ Zr ₂ Si ₂ PO ₁₂ : A Stable Na ⁺ -lon Solid Electrolyte for Solid-State Batteries. ACS Applied Energy Materials, 2020, 3, 7427-7437.	5.1	77
111	lonic Liquid-Derived Nitrogen-Enriched Carbon/Sulfur Composite Cathodes with Hierarchical Microstructure—A Step Toward Durable High-Energy and High-Performance Lithium–Sulfur Batteries. Chemistry of Materials, 2015, 27, 1674-1683.	6.7	76
112	On the gassing behavior of lithium-ion batteries with NCM523 cathodes. Journal of Solid State Electrochemistry, 2016, 20, 2961-2967.	2.5	76
113	Molecular Surface Modification of NCM622 Cathode Material Using Organophosphates for Improved Li-Ion Battery Full-Cells. ACS Applied Materials & Interfaces, 2018, 10, 20487-20498.	8.0	76
114	Li ⁺ -lon Dynamics in β-Li ₃ PS ₄ Observed by NMR: Local Hopping and Long-Range Transport. Journal of Physical Chemistry C, 2018, 122, 15954-15965.	3.1	76
115	Correlating Transport and Structural Properties in Li _{1+<i>x</i>} Al _{<i>x</i>} Ge _{2–<i>x</i>} (PO ₄) ₃ (LAGP) Prepared from Aqueous Solution. ACS Applied Materials & Interfaces, 2018, 10, 10935-10944.	8.0	75
116	Novel anion conductors – conductivity, thermodynamic stability and hydration of anion-substituted mayenite-type cage compounds C ₁₂ A ₇ :X (X = O, OH, Cl, F, CN, S, N). Physical Chemistry Chemical Physics, 2015, 17, 6844-6857.	2.8	73
117	High electrical conductivity and high porosity in a Guest@MOF material: evidence of TCNQ ordering within Cu ₃ BTC ₂ micropores. Chemical Science, 2018, 9, 7405-7412.	7.4	73
118	Interfacial Stability of Phosphate-NASICON Solid Electrolytes in Ni-Rich NCM Cathode-Based Solid-State Batteries. ACS Applied Materials & amp; Interfaces, 2019, 11, 23244-23253.	8.0	73
119	Analysis of Interfacial Effects in All-Solid-State Batteries with Thiophosphate Solid Electrolytes. ACS Applied Materials & Interfaces, 2020, 12, 9277-9291.	8.0	73
120	An <i>in situ</i> structural study on the synthesis and decomposition of LiNiO ₂ . Journal of Materials Chemistry A, 2020, 8, 1808-1820.	10.3	72
121	A mechanistic investigation of the Li10GeP2S12 LiNi1-x-yCoxMnyO2 interface stability in all-solid-state lithium batteries. Nature Communications, 2021, 12, 6669.	12.8	72
122	Linking Solid Electrolyte Degradation to Charge Carrier Transport in the Thiophosphateâ€Based Composite Cathode toward Solidâ€State Lithiumâ€Sulfur Batteries. Advanced Functional Materials, 2021, 31, 2010620.	14.9	71
123	Fair performance comparison of different carbon blacks in lithium–sulfur batteries with practical mass loadings – Simple design competes with complex cathode architecture. Journal of Power Sources, 2015, 296, 454-461.	7.8	69
124	Kinetic versus Thermodynamic Stability of LLZO in Contact with Lithium Metal. Chemistry of Materials, 2020, 32, 10207-10215.	6.7	68
125	Oxide nitrides: From oxides to solids with mobile nitrogen ions. Progress in Solid State Chemistry, 2009, 37, 81-131.	7.2	66
126	On the influence of strain on ion transport: microstructure and ionic conductivity of nanoscale YSZ Sc2O3 multilayers. Physical Chemistry Chemical Physics, 2010, 12, 14596.	2.8	66

#	Article	IF	CITATIONS
127	Rational Design of Quasi-Zero-Strain NCM Cathode Materials for Minimizing Volume Change Effects in All-Solid-State Batteries. , 2020, 2, 84-88.		66
128	Towards zinc-oxygen batteries with enhanced cycling stability: The benefit of anion-exchange ionomer for zinc sponge anodes. Journal of Power Sources, 2018, 395, 195-204.	7.8	65
129	Spectroscopic characterization of lithium thiophosphates by XPS and XAS – a model to help monitor interfacial reactions in all-solid-state batteries. Physical Chemistry Chemical Physics, 2018, 20, 20088-20095.	2.8	65
130	In situ and operando atomic force microscopy of high-capacity nano-silicon based electrodes for lithium-ion batteries. Nanoscale, 2016, 8, 14048-14056.	5.6	64
131	Influence of Crystallinity of Lithium Thiophosphate Solid Electrolytes on the Performance of Solidâ€State Batteries. Advanced Energy Materials, 2021, 11, 2100654.	19.5	64
132	Li-Rich Li _{1+<i>x</i>} Mn _{2–<i>x</i>} O ₄ Spinel Electrode Materials: An <i>Operando</i> Neutron Diffraction Study during Li ⁺ Extraction/Insertion. Journal of Physical Chemistry C, 2014, 118, 25947-25955.	3.1	63
133	New Insights into the Instability of Discharge Products in Na–O ₂ Batteries. ACS Applied Materials & Interfaces, 2016, 8, 20120-20127.	8.0	63
134	Investigation of Fluorine and Nitrogen as Anionic Dopants in Nickel-Rich Cathode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 44452-44462.	8.0	63
135	Amorphous versus Crystalline Li ₃ PS ₄ : Local Structural Changes during Synthesis and Li Ion Mobility. Journal of Physical Chemistry C, 2019, 123, 10280-10290.	3.1	62
136	Gas Evolution in Lithium-Ion Batteries: Solid versus Liquid Electrolyte. ACS Applied Materials & Interfaces, 2020, 12, 20462-20468.	8.0	62
137	Operando analysis of the molten Li LLZO interface: Understanding how the physical properties of Li affect the critical current density. Matter, 2021, 4, 1947-1961.	10.0	62
138	Homogeneous Coating with an Anion-Exchange Ionomer Improves the Cycling Stability of Secondary Batteries with Zinc Anodes. ACS Applied Materials & Interfaces, 2018, 10, 8640-8648.	8.0	61
139	Reaction Mechanism and Surface Film Formation of Conversion Materials for Lithium- and Sodium-Ion Batteries: An XPS Case Study on Sputtered Copper Oxide (CuO) Thin Film Model Electrodes. Journal of Physical Chemistry C, 2016, 120, 1400-1414.	3.1	60
140	Electrochemical Cross-Talk Leading to Gas Evolution and Capacity Fade in LiNi _{0.5} Mn _{1.5} O ₄ /Graphite Full-Cells. Journal of Physical Chemistry C, 2017, 121, 211-216.	3.1	57
141	Simultaneous acquisition of differential electrochemical mass spectrometry and infrared spectroscopy data for in situ characterization of gas evolution reactions in lithium-ion batteries. Electrochemistry Communications, 2015, 60, 64-69.	4.7	56
142	Origins of Dendrite Formation in Sodium–Oxygen Batteries and Possible Countermeasures. Energy Technology, 2017, 5, 2265-2274.	3.8	56
143	Lithium Argyrodite as Solid Electrolyte and Cathode Precursor for Solidâ€5tate Batteries with Long Cycle Life. Advanced Energy Materials, 2021, 11, 2101370.	19.5	56
144	In Situ Imaging of Electrochemically Induced Oxygen Spillover on Pt/YSZ Catalysts. Angewandte Chemie - International Edition, 2006, 45, 1473-1476.	13.8	55

#	Article	IF	CITATIONS
145	Simple cathode design for Li–S batteries: cell performance and mechanistic insights by in operando X-ray diffraction. Physical Chemistry Chemical Physics, 2014, 16, 18765-18771.	2.8	55
146	Amorphous and highly nonstoichiometric titania (TiOx) thin films close to metal-like conductivity. Journal of Materials Chemistry A, 2014, 2, 6631.	10.3	54
147	A New Null Matrix Electrochemical Cell for Rietveld Refinements of In-Situ or Operando Neutron Powder Diffraction Data. Journal of the Electrochemical Society, 2013, 160, A2176-A2183.	2.9	53
148	Analysis of Charge Carrier Transport Toward Optimized Cathode Composites for Allâ€5olidâ€5tate Liâ^'S Batteries. Batteries and Supercaps, 2021, 4, 183-194.	4.7	53
149	Oxygen tracer diffusion along interfaces of strained Y ₂ O ₃ /YSZ multilayers. Physical Chemistry Chemical Physics, 2013, 15, 1944-1955.	2.8	52
150	High-conductivity free-standing Li6PS5Cl/poly(vinylidene difluoride) composite solid electrolyte membranes for lithium-ion batteries. Journal of Materiomics, 2020, 6, 70-76.	5.7	51
151	Preparation and electrical properties of garnet-type Li6BaLa2Ta2O12 lithium solid electrolyte thin films prepared by pulsed laser deposition. Solid State Ionics, 2014, 258, 1-7.	2.7	50
152	Computational Investigation and Experimental Realization of Disordered High-Capacity Li-Ion Cathodes Based on Ni Redox. Chemistry of Materials, 2019, 31, 2431-2442.	6.7	50
153	An electrolyte partially-wetted cathode improving oxygen diffusion in cathodes of non-aqueous Li–air batteries. Electrochemistry Communications, 2013, 26, 93-96.	4.7	49
154	Nitrogen-Doped Carbon Electrodes: Influence of Microstructure and Nitrogen Configuration on the Electrical Conductivity of Carbonized Polyacrylonitrile and Poly(ionic liquid) Blends. Macromolecular Chemistry and Physics, 2015, 216, 1930-1944.	2.2	49
155	Sodiated carbon: a reversible anode for sodium–oxygen batteries and route for the chemical synthesis of sodium superoxide (NaO ₂). Journal of Materials Chemistry A, 2015, 3, 20633-20641.	10.3	49
156	Hierarchical Carbon with High Nitrogen Doping Level: A Versatile Anode and Cathode Host Material for Long-Life Lithium-Ion and Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2016, 8, 10274-10282.	8.0	49
157	Charge Transport in Single NCM Cathode Active Material Particles for Lithium-Ion Batteries Studied under Well-Defined Contact Conditions. ACS Energy Letters, 2019, 4, 2117-2123.	17.4	48
158	Between Liquid and All Solid: A Prospect on Electrolyte Future in Lithiumâ€lon Batteries for Electric Vehicles. Energy Technology, 2020, 8, 2000580.	3.8	48
159	High Performance All-Solid-State Batteries with a Ni-Rich NCM Cathode Coated by Atomic Layer Deposition and Lithium Thiophosphate Solid Electrolyte. ACS Applied Energy Materials, 2021, 4, 7338-7345.	5.1	48
160	Singlet Oxygen in Electrochemical Cells: A Critical Review of Literature and Theory. Chemical Reviews, 2021, 121, 12445-12464.	47.7	48
161	A gamma fluorinated ether as an additive for enhanced oxygen activity in Li–O ₂ batteries. Journal of Materials Chemistry A, 2015, 3, 19061-19067.	10.3	46
162	Surface Modification Strategies for Improving the Cycling Performance of Niâ€Rich Cathode Materials. European Journal of Inorganic Chemistry, 2020, 2020, 3117-3130.	2.0	46

#	Article	IF	CITATIONS
163	Advanced Nanoparticle Coatings for Stabilizing Layered Niâ€Rich Oxide Cathodes in Solid‧tate Batteries. Advanced Functional Materials, 2022, 32, .	14.9	45
164	Effect of indium (In) on corrosion and passivity of a beta-type Ti–Nb alloy in Ringer's solution. Applied Surface Science, 2015, 335, 213-222.	6.1	44
165	Quest for Organic Active Materials for Redox Flow Batteries: 2,3-Diaza-anthraquinones and Their Electrochemical Properties. Chemistry of Materials, 2018, 30, 762-774.	6.7	44
166	Visualization of Light Elements using 4D STEM: The Layeredâ€ŧoâ€Rock Salt Phase Transition in LiNiO ₂ Cathode Material. Advanced Energy Materials, 2020, 10, 2001026.	19.5	43
167	Storage of Lithium Metal: The Role of the Native Passivation Layer for the Anode Interface Resistance in Solid State Batteries. ACS Applied Energy Materials, 2021, 4, 12798-12807.	5.1	43
168	Electrode activation and degradation: Morphology changes of platinum electrodes on YSZ during electrochemical polarisation. Solid State Ionics, 2008, 179, 1835-1848.	2.7	42
169	The model case of an oxygen storage catalyst – non-stoichiometry, point defects and electrical conductivity of single crystalline CeO ₂ –ZrO ₂ –Y ₂ O ₃ solid solutions. Physical Chemistry Chemical Physics. 2014. 16. 25583-25600.	2.8	42
170	High-Throughput in Situ Pressure Analysis of Lithium-Ion Batteries. Analytical Chemistry, 2017, 89, 8122-8128.	6.5	42
171	Spinel materials for Li-ion batteries: new insights obtained by <i>operando</i> neutron and synchrotron X-ray diffraction. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2015, 71, 688-701.	1.1	41
172	Correlation between Chemical and Morphological Heterogeneities in LiNi _{0.5} Mn _{1.5} O ₄ Spinel Composite Electrodes for Lithium-Ion Batteries Determined by Micro-X-ray Fluorescence Analysis. Chemistry of Materials, 2015, 27, 2525-2531.	6.7	40
173	The interplay between (electro)chemical and (chemo)mechanical effects in the cycling performance of thiophosphate-based solid-state batteries. Materials Futures, 2022, 1, 015102.	8.4	40
174	Sol–gel synthesis and room-temperature properties of α-LiZr ₂ (PO ₄) ₃ . RSC Advances, 2015, 5, 17054-17059.	3.6	39
175	Cycling Performance and Limitations of LiNiO ₂ in Solid-State Batteries. ACS Energy Letters, 2021, 6, 3020-3028.	17.4	39
176	In Situ Investigation of Lithium Metal–Solid Electrolyte Anode Interfaces with ToFâ€&IMS. Advanced Materials Interfaces, 2022, 9, .	3.7	39
177	Template-Free Electrochemical Synthesis of High Aspect Ratio Sn Nanowires in Ionic Liquids: A General Route to Large-Area Metal and Semimetal Nanowire Arrays?. Chemistry of Materials, 2015, 27, 3830-3837.	6.7	38
178	Visualizing Current-Dependent Morphology and Distribution of Discharge Products in Sodium-Oxygen Battery Cathodes. Scientific Reports, 2016, 6, 24288.	3.3	38
179	On the impedance and phase transition of thin film all-solid-state batteries based on the Li4Ti5O12 system. Journal of Power Sources, 2017, 360, 593-604.	7.8	38
180	On the Additive Microstructure in Composite Cathodes and Alumina-Coated Carbon Microwires for Improved All-Solid-State Batteries. Chemistry of Materials, 2021, 33, 1380-1393.	6.7	38

#	Article	IF	CITATIONS
181	Synthesis and Postprocessing of Single-Crystalline LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ for Solid-State Lithium-Ion Batteries with High Capacity and Long Cycling Stability. Chemistry of Materials, 2021, 33, 2624-2634.	6.7	38
182	Operando Characterization Techniques for Allâ€Solidâ€State Lithiumâ€Ion Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100004.	5.8	38
183	Kinetics and Degradation Processes of CuO as Conversion Electrode for Sodium-Ion Batteries: An Electrochemical Study Combined with Pressure Monitoring and DEMS. Journal of Physical Chemistry C, 2017, 121, 8679-8691.	3.1	37
184	Macroscopic Displacement Reaction of Copper Sulfide in Lithium Solidâ€State Batteries. Advanced Energy Materials, 2020, 10, 2002394.	19.5	37
185	Plasma Electrochemistry in 1â€Butylâ€3â€methylimidazolium dicyanamide: Copper Nanoparticles from CuCl and CuCl ₂ . Plasma Processes and Polymers, 2011, 8, 32-37.	3.0	35
186	Pitfalls in the characterization of sulfur/carbon nanocomposite materials for lithium–sulfur batteries. Carbon, 2014, 79, 245-255.	10.3	35
187	Imaging of Lipids in Native Human Bone Sections Using TOF–Secondary Ion Mass Spectrometry, Atmospheric Pressure Scanning Microprobe Matrix-Assisted Laser Desorption/Ionization Orbitrap Mass Spectrometry, and Orbitrap–Secondary Ion Mass Spectrometry. Analytical Chemistry, 2018, 90, 8856-8864.	6.5	35
188	A Firstâ€Principles and Experimental Investigation of Nickel Solubility into the P2 Na <i>_x</i> CoO ₂ Sodiumâ€Ion Cathode. Advanced Energy Materials, 2018, 8, 1801446.	19.5	34
189	The LiNiO ₂ Cathode Active Material: A Comprehensive Study of Calcination Conditions and their Correlation with Physicochemical Properties. Part I. Structural Chemistry. Journal of the Electrochemical Society, 2021, 168, 110518.	2.9	34
190	Thermodynamics, structure and kinetics in the system Ga–O–N. Progress in Solid State Chemistry, 2009, 37, 132-152.	7.2	33
191	Chlorine ion mobility in Cl-mayenite (Ca12Al14O32Cl2): An investigation combining high-temperature neutron powder diffraction, impedance spectroscopy and quantum-chemical calculations. Solid State lonics, 2014, 254, 48-58.	2.7	33
192	Impedance Analysis of NCM Cathode Materials: Electronic and Ionic Partial Conductivities and the Influence of Microstructure. ACS Applied Energy Materials, 2021, 4, 1335-1345.	5.1	33
193	Porous model type electrodes by induced dewetting of thin Pt films on YSZ substrates. Solid State Ionics, 2010, 181, 7-15.	2.7	31
194	Toward Better Sodium–Oxygen batteries: A Study on the Performance of Engineered Oxygen Electrodes based on Carbon Nanotubes. Energy Technology, 2015, 3, 242-248.	3.8	31
195	Atomistic understanding of the LiNiO ₂ –NiO ₂ phase diagram from experimentally guided lattice models. Journal of Materials Chemistry A, 2021, 9, 14928-14940.	10.3	31
196	Electrochemical deposition of silver from 1-ethyl-3-methylimidazolium trifluoromethanesulfonate. Electrochimica Acta, 2011, 56, 10332-10339.	5.2	30
197	Incorporating Diamondoids as Electrolyte Additive in the Sodium Metal Anode to Mitigate Dendrite Growth. ChemSusChem, 2020, 13, 2661-2670.	6.8	30
198	Ionic Conductivity of Mesostructured Yttria-Stabilized Zirconia Thin Films with Cubic Pore Symmetry—On the Influence of Water on the Surface Oxygen Ion Transport. ACS Applied Materials & Interfaces, 2015, 7, 11792-11801.	8.0	29

#	Article	IF	CITATIONS
199	Assessment of different sample preparation routes for mass spectrometric monitoring and imaging of lipids in bone cells via ToF-SIMS. Biointerphases, 2015, 10, 019016.	1.6	29
200	Challenges for Developing Rechargeable Roomâ€Temperature Sodium Oxygen Batteries. Advanced Materials Technologies, 2018, 3, 1800110.	5.8	29
201	Unraveling the Formation Mechanism of Solid–Liquid Electrolyte Interphases on LiPON Thin Films. ACS Applied Materials & Interfaces, 2019, 11, 9539-9547.	8.0	29
202	Silica Nanoparticles as Structural Promoters for Oxygen Cathodes of Lithium–Oxygen Batteries. Journal of Physical Chemistry C, 2013, 117, 19897-19904.	3.1	28
203	ToF-SIMS analysis of osteoblast-like cells and their mineralized extracellular matrix on strontium enriched bone cements. Biointerphases, 2013, 8, 17.	1.6	28
204	Mesoporous hollow carbon spheres for lithium–sulfur batteries: distribution of sulfur and electrochemical performance. Beilstein Journal of Nanotechnology, 2016, 7, 1229-1240.	2.8	28
205	Multistep Reaction Mechanisms in Nonaqueous Lithium–Oxygen Batteries with Redox Mediator: A Model-Based Study. Journal of Physical Chemistry C, 2016, 120, 24623-24636.	3.1	28
206	Potassium Salts as Electrolyte Additives in Lithium–Oxygen Batteries. Journal of Physical Chemistry C, 2017, 121, 3822-3829.	3.1	28
207	From LiNiO ₂ to Li ₂ NiO ₃ : Synthesis, Structures and Electrochemical Mechanisms in Li-Rich Nickel Oxides. Chemistry of Materials, 2020, 32, 9211-9227.	6.7	28
208	The LiNiO ₂ Cathode Active Material: A Comprehensive Study of Calcination Conditions and their Correlation with Physicochemical Properties Part II. Morphology. Journal of the Electrochemical Society, 2022, 169, 020529.	2.9	28
209	Surface oxygen exchange between yttria-stabilised zirconia and a low-temperature oxygen rf-plasma. Solid State Ionics, 2004, 166, 89-102.	2.7	27
210	Surface and in-depth characterization of lithium-ion battery cathodes at different cycle states using confocal micro-X-ray fluorescence-X-ray absorption near edge structure analysis. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 85, 62-70.	2.9	27
211	Single Crystals of C12A7 (Ca12Al14O33) Substituted with 1 mol % Iron. Crystal Growth and Design, 2014, 14, 2240-2245.	3.0	27
212	Electrochemical properties and optical transmission of high Li ⁺ conducting LiSiPON electrolyte films. Physica Status Solidi (B): Basic Research, 2017, 254, 1600088.	1.5	27
213	Silicon Nanoparticles with a Polymer-Derived Carbon Shell for Improved Lithium-Ion Batteries: Investigation into Volume Expansion, Gas Evolution, and Particle Fracture. ACS Omega, 2018, 3, 16706-16713.	3.5	27
214	Improved Cycling Performance of Highâ€Nickel NMC by Dry Powder Coating with Nanostructured Fumed Al ₂ O ₃ , TiO ₂ , and ZrO ₂ : A Comparison. Batteries and Supercaps, 2021, 4, 1003-1017.	4.7	27
215	Facile Dry Coating Method of Highâ€Nickel Cathode Material by Nanostructured Fumed Alumina (Al ₂ O ₃) Improving the Performance of Lithiumâ€Ion Batteries. Energy Technology, 2021, 9, 2100028.	3.8	27
216	Positive and negative magnetoresistance in the system silver–selenium. Physica B: Condensed Matter, 2001, 308-310, 1086-1089.	2.7	26

#	Article	IF	CITATIONS
217	A Biomimetic Principle for the Chemical Modification of Metal Surfaces: Synthesis of Tripodal Catecholates as Analogues of Siderophores and Mussel Adhesion Proteins. Chemistry - A European Journal, 2011, 17, 8596-8603.	3.3	26
218	Observing Local Oxygen Interstitial Diffusion in Donor-Doped Ceria by ¹⁷ 0 NMR Relaxometry. Journal of Physical Chemistry C, 2016, 120, 8568-8577.	3.1	26
219	Li ₁₈ P ₆ N ₁₆ —A Lithium Nitridophosphate with Unprecedented Tricyclic [P ₆ N ₁₆] ^{18â^'} Ions. Chemistry - A European Journal, 2017, 23, 2185-2191.	3.3	26
220	Promotion of catalytic reactions by electrochemical polarization. Physical Chemistry Chemical Physics, 2000, 2, 1935-1941.	2.8	25
221	Indirect state-of-charge determination of all-solid-state battery cells by X-ray diffraction. Chemical Communications, 2019, 55, 11223-11226.	4.1	25
222	Hin und zurück – die Entwicklung von LiNiO ₂ als Kathodenaktivmaterial. Angewandte Chemie, 2019, 131, 10542-10569.	2.0	25
223	And Yet It Moves: LiNiO ₂ , a Dynamic Jahn–Teller System. Chemistry of Materials, 2020, 32, 10096-10103.	6.7	25
224	Kinetic Limitations in Cycled Nickel-Rich NCM Cathodes and Their Effect on the Phase Transformation Behavior. ACS Applied Energy Materials, 2020, 3, 2821-2827.	5.1	25
225	Lithiumâ€Metal Anode Instability of the Superionic Halide Solid Electrolytes and the Implications for Solidâ€State Batteries. Angewandte Chemie, 2021, 133, 6792-6797.	2.0	25
226	Field-driven migration of bipolar metal particles on solid electrolytes. Applied Physics Letters, 2008, 93, .	3.3	24
227	Controlled surface modification of Ti–40Nb implant alloy by electrochemically assisted inductively coupled RF plasma oxidation. Acta Biomaterialia, 2013, 9, 9201-9210.	8.3	24
228	Improving the capacity of lithium–sulfur batteries by tailoring the polysulfide adsorption efficiency of hierarchical oxygen/nitrogen-functionalized carbon host materials. Physical Chemistry Chemical Physics, 2017, 19, 8349-8355.	2.8	24
229	Diffusivity and Solubility of Oxygen in Solvents for Metal/Oxygen Batteries: A Combined Theoretical and Experimental Study. Journal of the Electrochemical Society, 2018, 165, A3095-A3099.	2.9	24
230	Diffusion mechanism in the superionic conductor Li4PS4I studied by first-principlesÂcalculations. Solid State Ionics, 2018, 319, 83-91.	2.7	23
231	Li ⁺ Ion Conductors with Adamantaneâ€Type Nitridophosphate Anions βâ€Li ₁₀ P ₄ N ₁₀ and Li ₁₃ P ₄ N ₁₀ <i>X</i> ₃ with <i>X</i> =Cl, Br. Chemistry - A European Iournal. 2018. 24. 196-205.	3.3	23
232	Metal release and cell biological compatibility of betaâ€type Tiâ€40Nb containing indium. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1686-1697.	3.4	23
233	Development of a Wire Reference Electrode for Lithium All-Solid-State Batteries with Polymer Electrolyte: FEM Simulation and Experiment. Journal of the Electrochemical Society, 2018, 165, A1363-A1371.	2.9	23
234	The Formation of the Solid/Liquid Electrolyte Interphase (SLEI) on NASICONâ€Type Glass Ceramics and LiPON. Advanced Materials Interfaces, 2020, 7, 2000380.	3.7	23

#	Article	IF	CITATIONS
235	The effect of gallium substitution on the structure and electrochemical performance of LiNiO ₂ in lithium-ion batteries. Materials Advances, 2020, 1, 639-647.	5.4	23
236	Working Principle of an Ionic Liquid Interlayer During Pressureless Lithium Stripping on Li _{6.25} Al _{0.25} La ₃ Zr ₂ O ₁₂ (LLZO) Garnet‶ype Solid Electrolyte. Batteries and Supercaps, 2021, 4, 1145-1155.	4.7	23
237	Design-of-experiments-guided optimization of slurry-cast cathodes for solid-state batteries. Cell Reports Physical Science, 2021, 2, 100465.	5.6	23
238	Investigation of Various Ionic Liquids and Catalyst Materials for Lithium-Oxygen Batteries. Zeitschrift Fur Physikalische Chemie, 2012, 226, 107-119.	2.8	22
239	A tool to plan photon-in/photon-out experiments: count rates, dips and self-absorption. Journal of Synchrotron Radiation, 2012, 19, 911-919.	2.4	22
240	Electrochemical Pressure Impedance Spectroscopy (EPIS) as Diagnostic Method for Electrochemical Cells with Gaseous Reactants: A Model-Based Analysis. Journal of the Electrochemical Society, 2016, 163, A599-A610.	2.9	22
241	Tailoring Dihydroxyphthalazines to Enable Their Stable and Efficient Use in the Catholyte of Aqueous Redox Flow Batteries. Chemistry of Materials, 2020, 32, 3427-3438.	6.7	22
242	Editors' Choice—Quantification of the Impact of Chemo-Mechanical Degradation on the Performance and Cycling Stability of NCM-Based Cathodes in Solid-State Li-Ion Batteries. Journal of the Electrochemical Society, 2021, 168, 070546.	2.9	22
243	Electrodeposition of Metals for Micro- and Nanostructuring at Interfaces between Solid, Liquid and Gaseous Conductors: Dendrites, Whiskers and Nanoparticles. Zeitschrift Fur Physikalische Chemie, 2006, 220, 1507-1527.	2.8	21
244	¹⁸ O-tracer diffusion along nanoscaled Sc ₂ O ₃ /yttria stabilized zirconia (YSZ) multilayers: on the influence of strain. Science and Technology of Advanced Materials, 2013, 14, 035007.	6.1	21
245	Effect of surface carbonates on the cyclability of LiNbO3-coated NCM622 in all-solid-state batteries with lithium thiophosphate electrolytes. Scientific Reports, 2021, 11, 5367.	3.3	21
246	Stabilizing the Cathode/Electrolyte Interface Using a Dry-Processed Lithium Titanate Coating for All-Solid-State Batteries. Chemistry of Materials, 2021, 33, 6713-6723.	6.7	21
247	Influence of Lithium Ion Kinetics, Particle Morphology and Voids on the Electrochemical Performance of Composite Cathodes for All-Solid-State Batteries. Journal of the Electrochemical Society, 2022, 169, 020539.	2.9	21
248	In situ analysis of gas evolution in liquid- and solid-electrolyte-based batteries with current and next-generation cathode materials. Journal of Materials Research, 2022, 37, 3146-3168.	2.6	21
249	Increasing the Pressureâ€Free Stripping Capacity of the Lithium Metal Anode in Solidâ€Stateâ€Batteries by Carbon Nanotubes. Advanced Energy Materials, 2022, 12, .	19.5	21
250	CN-mayenite Ca12Al14O32(CN)2: Replacing mobile oxygen ions by cyanide ions. Solid State Sciences, 2014, 38, 69-78.	3.2	20
251	A Rapid and Facile Approach for the Recycling of Highâ€Performance LiNi _{1â^'<i>x</i>â^'<i>y</i>} Co _{<i>x</i>} Mn _{<i>y</i>} O ₂ Active Materials. ChemSusChem, 2021, 14, 441-448.	6.8	20
252	Understanding the formation of antiphase boundaries in layered oxide cathode materials and their evolution upon electrochemical cycling. Matter, 2021, 4, 3953-3966.	10.0	20

#	Article	IF	CITATIONS
253	Reaction of Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄) ₃ and LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ in Co-Sintered Composite Cathodes for Solid-State Batteries. ACS Applied Materials & Interfaces, 2021, 13, 47488-47498.	8.0	20
254	A simple synthesis of nanostructured Cu-incorporated SnO2 phases with improved cycle performance for lithium ion batteries. Electrochemistry Communications, 2013, 36, 33-37.	4.7	19
255	FeO _{<i>x</i>} -Coated SnO ₂ as an Anode Material for Lithium Ion Batteries. Journal of Physical Chemistry C, 2014, 118, 8818-8823.	3.1	19
256	LATP and LiCoPO4 thin film preparation – Illustrating interfacial issues on the way to all-phosphate SSBs. Solid State Ionics, 2019, 342, 115054.	2.7	19
257	Controlled electrochemical growth of silver microwires. Journal of Solid State Electrochemistry, 2005, 9, 239-243.	2.5	18
258	Electrochemical activation of molecular nitrogen at the Ir/YSZ interface. Physical Chemistry Chemical Physics, 2011, 13, 3394.	2.8	18
259	Electrochemically induced oxygen spillover and diffusion on Pt(111): PEEM imaging and kinetic modelling. Physical Chemistry Chemical Physics, 2011, 13, 12798.	2.8	18
260	Quantification of calcium content in bone by using ToF-SIMS–a first approach. Biointerphases, 2013, 8, 31.	1.6	18
261	Detection of organic nanoparticles in human bone marrow-derived stromal cells using ToF–SIMS and PCA. Analytical and Bioanalytical Chemistry, 2015, 407, 4555-4565.	3.7	18
262	How to Control the Discharge Product in Sodium–Oxygen Batteries: Proposing New Pathways for Sodium Peroxide Formation. Energy Technology, 2017, 5, 1242-1249.	3.8	18
263	Investigations into the superionic glass phase of Li ₄ PS ₄ I for improving the stability of high-loading all-solid-state batteries. Inorganic Chemistry Frontiers, 2020, 7, 3953-3960.	6.0	18
264	Single step synthesis of W-modified LiNiO ₂ using an ammonium tungstate flux. Journal of Materials Chemistry A, 2022, 10, 7841-7855.	10.3	17
265	Realization of High Luminous Efficacy at Low Voltages in the Plasma Display Panel With SrO–MgO Double Layer. IEEE Electron Device Letters, 2010, 31, 686-688.	3.9	16
266	Low-temperature synthesis of macroporous LiTi ₂ (PO ₄) ₃ /C with superior lithium storage properties. RSC Advances, 2015, 5, 14887-14891.	3.6	16
267	Ein- oder Zwei-Elektronen-Transfer? - Zur Bestimmung des Entladeprodukts in Natrium-Sauerstoff-Batterien. Angewandte Chemie, 2016, 128, 4716-4726.	2.0	16
268	ToF-SIMS study of differentiation of human bone-derived stromal cells: new insights into osteoporosis. Analytical and Bioanalytical Chemistry, 2017, 409, 4425-4435.	3.7	16
269	Li ₄₇ B ₃ P ₁₄ N ₄₂ â€"A Lithium Nitridoborophosphate with [P ₃ N ₉] ^{12â[^]} , [P ₄ N ₁₀] ^{10â[^]} , and the Unprecedented [B ₃ P ₃ N ₁₃] ^{15â[^]} Ion. Angewandte Chemie - International Edition. 2017. 56. 4806-4809.	13.8	16
270	<i>In Situ</i> Monitoring of Thermally Induced Effects in Nickel-Rich Layered Oxide Cathode Materials at the Atomic Level. ACS Applied Materials & amp; Interfaces, 2020, 12, 57047-57054.	8.0	16

#	Article	IF	CITATIONS
271	Increased Performance Improvement of Lithium-Ion Batteries by Dry Powder Coating of High-Nickel NMC with Nanostructured Fumed Ternary Lithium Metal Oxides. ACS Applied Energy Materials, 2021, 4, 8832-8848.	5.1	16
272	Single versus poly-crystalline layered oxide cathode materials for solid-state battery applications - a short review article. Current Opinion in Electrochemistry, 2021, 31, 100877.	4.8	16
273	The bridge to redox switches. Nature Materials, 2009, 8, 88-89.	27.5	15
274	Janus-Faced SiO ₂ : Activation and Passivation in the Electrode System Platinum/Yttria-Stabilized Zirconia. Journal of Physical Chemistry Letters, 2010, 1, 2322-2326.	4.6	15
275	Nanostructured and nanoporous LiFePO4 and LiNi0.5Mn1.5O4-δ as cathode materials for lithium-ion batteries. Progress in Solid State Chemistry, 2014, 42, 218-241.	7.2	15
276	Highâ€Performance Lithium–Sulfur Batteries using Yolk–Shell Type Sulfur–Silica Nanocomposite Particles with Raspberry‣ike Morphology. Energy Technology, 2015, 3, 830-833.	3.8	15
277	Tracing Low Amounts of Mg in the Doped Cathode Active Material LiNiO ₂ . Journal of the Electrochemical Society, 2022, 169, 030540.	2.9	15
278	Template assisted solid state electrochemical growth of silver micro- and nanowires. Electrochimica Acta, 2007, 53, 319-323.	5.2	14
279	Combining high temperature electrochemistry and time of flight secondary ion mass spectrometry: Quasi in situ study of lanthanum strontium chromate manganate electrodes. Journal of Power Sources, 2013, 221, 97-107.	7.8	14
280	Anodization of titanium in radio frequency oxygen discharge — Microstructure, kinetics & transport mechanism. Solid State Ionics, 2016, 290, 130-139.	2.7	14
281	Li ₄₇ B ₃ P ₁₄ N ₄₂ â€"A Lithium Nitridoborophosphate with [P ₃ N ₉] ^{12â''} , [P ₄ N ₁₀] ^{10â''} , and the Unprecedented [B ₃ P ₃ N ₁₃] ^{15â''} Ion. Angewandte Chemie, 2017, 129, 4884-4887.	2.0	14
282	Enumeration as a Tool for Structure Solution: A Materials Genomic Approach to Solving the Cation-Ordered Structure of Na ₃ V ₂ (PO ₄) ₂ F ₃ . Chemistry of Materials, 2020, 32, 8981-8992.	6.7	14
283	The influence of non-equilibrium defects on the anodic dissolution of a metal into a solid electrolyte. Solid State Ionics, 2006, 177, 447-456.	2.7	13
284	Pathways to Triplet or Singlet Oxygen during the Dissociation of Alkali Metal Superoxides: Insights by Multireference Calculations of Molecular Model Systems. Chemistry - A European Journal, 2020, 26, 2395-2404.	3.3	13
285	Understanding the Impact of Microstructure on Charge Transport in Polycrystalline Materials Through Impedance Modelling. Journal of the Electrochemical Society, 2021, 168, 090516.	2.9	13
286	Embroidered Copper Microwire Current Collector for Improved Cycling Performance of Silicon Anodes in Lithium-Ion Batteries. Scientific Reports, 2017, 7, 13010.	3.3	12
287	Ag ₃ V ₂ (PO ₄) ₂ F ₃ , a new compound obtained by Ag ⁺ /Na ⁺ ion exchange into the Na ₃ V ₂ (PO ₄) ₂ F ₃ framework. Journal of Materials Chemistry A. 2018. 6. 10340-10347.	10.3	12
288	The Sound of Batteries: An Operando Acoustic Emission Study of the LiNiO ₂ Cathode in Li–Ion Cells. Batteries and Supercaps, 2020, 3, 1021-1027.	4.7	12

#	Article	IF	CITATIONS
289	Instability of the Li ₇ SiPS ₈ Solid Electrolyte at the Lithium Metal Anode and Interphase Formation. Chemistry of Materials, 2022, 34, 3659-3669.	6.7	12
290	Gyroidal Porous Carbon Activated with NH ₃ or CO ₂ as Lithiumâ^'Sulfur Battery Cathodes. Batteries and Supercaps, 2018, 1, 83-94.	4.7	11
291	Analyzing Nanometer-Thin Cathode Particle Coatings for Lithium-Ion Batteries—The Example of TiO ₂ on NCM622. ACS Applied Energy Materials, 2021, 4, 7168-7181.	5.1	11
292	Multiâ€Element Surface Coating of Layered Niâ€Rich Oxide Cathode Materials and Their Longâ€Term Cycling Performance in Lithiumâ€Ion Batteries. Advanced Materials Interfaces, 2022, 9, 2101100.	3.7	10
293	Advanced Analytical Characterization of Interface Degradation in Ni-Rich NCM Cathode Co-Sintered with LATP Solid Electrolyte. ACS Applied Energy Materials, 2022, 5, 4651-4663.	5.1	10
294	A Quasiâ€Multinary Composite Coating on a Nickelâ€Rich NCM Cathode Material for Allâ€Solidâ€State Batteries. Batteries and Supercaps, 2022, 5, .	4.7	9
295	Storage of cell samples for ToF-SIMS experiments—How to maintain sample integrity. Biointerphases, 2016, 11, 02A313.	1.6	8
296	Artificial Composite Anode Comprising High apacity Silicon and Carbonaceous Nanostructures for Long Cycle Life Lithiumâ€lon Batteries. Batteries and Supercaps, 2018, 1, 27-32.	4.7	8
297	Influence of synthesis parameters on crystallization behavior and ionic conductivity of the Li4PS4I solid electrolyte. Scientific Reports, 2021, 11, 14073.	3.3	8
298	Platinum microelectrodes on gadolinia doped ceria single crystals – bulk properties and electrode kinetics. Physical Chemistry Chemical Physics, 2018, 20, 8294-8301.	2.8	7
299	Reversible Capacity Loss of LiCoO ₂ Thin Film Electrodes. ACS Applied Energy Materials, 2020, 3, 6065-6071.	5.1	7
300	Template-Free Electrodeposition of Uniform and Highly Crystalline Tin Nanowires from Organic Solvents Using Unconventional Additives. Electrochimica Acta, 2017, 246, 1016-1022.	5.2	6
301	Understanding the Transport of Atmospheric Gases in Liquid Electrolytes for Lithium–Air Batteries. Journal of the Electrochemical Society, 2021, 168, 070504.	2.9	6
302	In-situ structural investigation of non-stoichiometric HfO2-x films using quick-scanning extended X-ray absorption fine structure. Thin Solid Films, 2013, 539, 60-64.	1.8	5
303	Zukunftstechnologien. , 2013, , 199-217.		5
304	Hybridization of carbon nanotube tissue and MnO2 as a generic advanced air cathode in metal–air batteries. Journal of Power Sources, 2021, 514, 230597.	7.8	5
305	Deeper Understanding of the Lithiation Reaction during the Synthesis of LiNiO ₂ Towards an Increased Production Throughput. Journal of the Electrochemical Society, 0, , .	2.9	5
306	Phase formation and stability in TiO _{<i>x</i>} and ZrO _{<i>x</i>} thin films: Extremely sub-stoichiometric functional oxides for electrical and TCO applications. Zeitschrift Fur Kristallographie - Crystalline Materials, 2017, 232, 161-183.	0.8	4

#	Article	IF	CITATIONS
307	Structural analysis and electrical characterization of cation-substituted lithium ion conductors Li1ⰒTi1ⰒMOPO4 (M = Nb, Ta, Sb). Solid State Ionics, 2018, 319, 170-179.	2.7	4
308	The role of a diffusion barrier in plasma display panel with the high gamma cathode layer. Applied Physics Letters, 2011, 99, 171501.	3.3	2
309	Dynamic Modeling of the Reaction Mechanism in a Li/O ₂ Cell: Influence of a Redox Mediator. ECS Transactions, 2015, 69, 11-21.	0.5	2
310	Functionalization of Ti-40Nb implant material with strontium by reactive sputtering. Biomaterials Research, 2017, 21, 18.	6.9	2
311	Influence of the PO _{<i>u</i>} N _{4â^'<i>u</i>} structural units on the formation energies and transport properties of lithium phosphorus oxynitride: a DFT study. Physical Chemistry Chemical Physics, 2021, 23, 22567-22588.	2.8	2
312	Zukunftsfeld Festkörperelektrochemie. Nachrichten Aus Der Chemie, 2007, 55, 27-32.	0.0	1
313	Grenzflähen fester Ionenleiter. Oberflähenâ€Elektrochemie. Chemie in Unserer Zeit, 2008, 42, 80-90.	0.1	1
314	Physical Chemistry of Solids – The Science behind Materials Engineering: Concepts, Models, Methods. Zeitschrift Fur Physikalische Chemie, 2009, 223, 1239-1258.	2.8	1
315	The Sound of Batteries: An Operando Acoustic Emission Study of the LiNiO 2 Cathode in Li–Ion Cells. Batteries and Supercaps, 2020, 3, 965-965.	4.7	1
316	Defect Chemistry of Individual Grains with and without Grain Boundaries of Al-Doped Ceria Determined Using Well-Defined Microelectrodes. Journal of Physical Chemistry C, 2022, 126, 2737-2746.	3.1	1
317	Synthesis, Crystal Growth and Structure of Substituted Mayenite. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2010, 636, 2102-2102.	1.2	0
318	Li-Ion Conducting Garnet-Type Materials - Structure and Electrochemical Characterization. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 1623-1623.	1.2	0
319	Diffraction studies of Tavorite-based polyanionic materials for Li–ion batteries. Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C356-C356.	0.1	0
320	In Situ Studies for Understanding Intragranular Nanopore Evolution in Ni-rich Layered Oxide Cathode Material. Microscopy and Microanalysis, 2019, 25, 2032-2033.	0.4	0
321	A robust technique to image all elements in LiNiO2 cathode active material by 4D-STEM. Microscopy and Microanalysis, 2021, 27, 1446-1449.	0.4	0
322	A New Electrochemical Cell for Rietveld Refinements of In-Situ Powder ND Data. Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C1177-C1177.	0.1	0
323	Lithium Metal Growth Kinetics on LLZO Garnet Type Solid Electrolytes – <i>Operando</i> Study of Lithium Deposition and Dendrite Growth. SSRN Electronic Journal, 0, , .	0.4	0
324	From LiNiO2 to Li2NiO3: Synthesis, Structures and Electrochemical Mechanisms in Li-Rich Nickel Oxides. ECS Meeting Abstracts, 2021, MA2021-02, 223-223.	0.0	0

#	Article	IF	CITATIONS
325	Temperature-dependent Li vacancy diffusion in Li ₄ Ti ₅ O ₁₂ by means of first principles molecular dynamic simulations. Physical Chemistry Chemical Physics, 2022, 24, 5301-5316.	2.8	0
326	(Digital Presentation) Modifying LiNiO ₂ with W Via a Single Step Synthesis Route. ECS Meeting Abstracts, 2022, MA2022-01, 218-218.	0.0	0