
Alison Elder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9112748/publications.pdf Version: 2024-02-01

ALISON FLDER

#	Article	IF	CITATIONS
1	Exposure, dose, and toxicokinetics of metals. , 2022, , 55-86.		2
2	FutureTox IV Workshop Summary: <i>Predictive Toxicology for Healthy Children</i> . Toxicological Sciences, 2021, 180, 198-211.	3.1	15
3	Effects of concentrated ambient ultrafine particulate matter on hallmarks of Alzheimer's disease in the 3xTgAD mouse model. NeuroToxicology, 2021, 84, 172-183.	3.0	15
4	Diesel exhaust particle exposure reduces expression of the epithelial tight junction protein Tricellulin. Particle and Fibre Toxicology, 2020, 17, 52.	6.2	23
5	Predicting dissolution and transformation of inhaled nanoparticles in the lung using abiotic flow cells: The case of barium sulfate. Scientific Reports, 2020, 10, 458.	3.3	39
6	Particle toxicology and health - where are we?. Particle and Fibre Toxicology, 2019, 16, 19.	6.2	133
7	Effects of neonatal inhalation exposure to ultrafine carbon particles on pathology and behavioral outcomes in C57BL/6J mice. Particle and Fibre Toxicology, 2019, 16, 10.	6.2	19
8	Selective memory and behavioral alterations after ambient ultrafine particulate matter exposure in aged 3xTgAD Alzheimer's disease mice. Particle and Fibre Toxicology, 2019, 16, 45.	6.2	32
9	The roles of surface chemistry, dissolution rate, and delivered dose in the cytotoxicity of copper nanoparticles. Nanoscale, 2017, 9, 4739-4750.	5.6	20
10	From Dose to Response: In Vivo Nanoparticle Processing and Potential Toxicity. Advances in Experimental Medicine and Biology, 2017, 947, 71-100.	1.6	41
11	Nanomaterials Versus Ambient Ultrafine Particles: An Opportunity to Exchange Toxicology Knowledge. Environmental Health Perspectives, 2017, 125, 106002.	6.0	274
12	Dung biomass smoke activates inflammatory signaling pathways in human small airway epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L1222-L1233.	2.9	25
13	Biodistribution of inhaled metal oxide nanoparticles mimicking occupational exposure: a preliminary investigation using enhanced darkfield microscopy. Journal of Biophotonics, 2016, 9, 987-993.	2.3	23
14	Electronic cigarette aerosols and copper nanoparticles induce mitochondrial stress and promote DNA fragmentation in lung fibroblasts. Biochemical and Biophysical Research Communications, 2016, 477, 620-625.	2.1	119
15	Environmental health hazards of e-cigarettes and their components: Oxidants and copper in e-cigarette aerosols. Environmental Pollution, 2015, 198, 100-107.	7.5	167
16	Routes of Exposure, Dose, and Toxicokinetics of Metalsâ^—â^—This chapter is based on the chapter Routes of Exposure, Dose, and Metabolism of Metals by W.S. Beckett, G.F. Nordberg, and T.W. Clarkson in the third edition of this handbook , 2015, , 45-74.		10
17	Particulate Air Pollution and CNS Health. Molecular and Integrative Toxicology, 2015, , 269-288.	0.5	3
18	Workshop report: Strategies for setting occupational exposure limits for engineered nanomaterials. Regulatory Toxicology and Pharmacology, 2014, 68, 305-311.	2.7	44

ALISON ELDER

#	Article	IF	CITATIONS
19	Engineering safer-by-design silica-coated ZnO nanorods with reduced DNA damage potential. Environmental Science: Nano, 2014, 1, 144.	4.3	85
20	Equivalent titanium dioxide nanoparticle deposition by intratracheal instillation and whole body inhalation: the effect of dose rate on acute respiratory tract inflammation. Particle and Fibre Toxicology, 2014, 11, 5.	6.2	119
21	Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, 50820.	2.1	227
22	Interlaboratory Evaluation of Rodent Pulmonary Responses to Engineered Nanomaterials: The NIEHS Nano GO Consortium. Environmental Health Perspectives, 2013, 121, 676-682.	6.0	121
23	Interlaboratory Evaluation of <i>in Vitro</i> Cytotoxicity and Inflammatory Responses to Engineered Nanomaterials: The NIEHS Nano GO Consortium. Environmental Health Perspectives, 2013, 121, 683-690.	6.0	176
24	Quantification of quantum dot murine skin penetration with UVR barrier impairment. Nanotoxicology, 2013, 7, 1386-1398.	3.0	27
25	The outdoor air pollution and brain health workshop. NeuroToxicology, 2012, 33, 972-984.	3.0	422
26	Effects of Surface Chemistry on the Generation of Reactive Oxygen Species by Copper Nanoparticles. ACS Nano, 2012, 6, 2157-2164.	14.6	138
27	Assessing the relevance of in vitro studies in nanotoxicology by examining correlations between in vitro and in vivo data. Toxicology, 2012, 297, 1-9.	4.2	95
28	Validation of an LDH assay for assessing nanoparticle toxicity. Toxicology, 2011, 287, 99-104.	4.2	210
29	Correlating Physico-Chemical with Toxicological Properties of Nanoparticles: The Present and the Future. ACS Nano, 2010, 4, 5527-5531.	14.6	296
30	Concept of Assessing Nanoparticle Hazards Considering Nanoparticle Dosemetric and Chemical/Biological Response Metrics. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2010, 73, 445-461.	2.3	227
31	A nanoparticle dispersion method for <i>in vitro</i> and <i>in vivo</i> nanotoxicity study. Nanotoxicology, 2010, 4, 42-51.	3.0	59
32	Pulmonary response after exposure to inhaled nickel hydroxide nanoparticles: Short and long-term studies in mice. Nanotoxicology, 2010, 4, 106-119.	3.0	65
33	Nanoparticle (NP) uptake by type I alveolar epithelial cells and their oxidant stress response. Nanotoxicology, 2009, 3, 307-318.	3.0	64
34	Emerging methods and tools for environmental risk assessment, decision-making, and policy for nanomaterials: summary of NATO Advanced Research Workshop. Journal of Nanoparticle Research, 2009, 11, 513-527.	1.9	74
35	Physicochemical factors that affect metal and metal oxide nanoparticle passage across epithelial barriers. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2009, 1, 434-450.	6.1	66
36	How do nanotubes suppress T cells?. Nature Nanotechnology, 2009, 4, 409-410.	31.5	14

ALISON ELDER

#	Article	IF	CITATIONS
37	Nanoparticles and the Brain: Cause for Concern?. Journal of Nanoscience and Nanotechnology, 2009, 9, 4996-5007.	0.9	274
38	Breeching Epithelial Barriers – Physiochemical Factors Impacting Nanomaterial Translocation and Toxicity. Nanostructure Science and Technology, 2009, , 33-62.	0.1	4
39	Nanoparticle (NP) uptake by type I alveolar epithelial cells and their oxidant stress response. Nanotoxicology, 2009, 3, 1-12.	3.0	19
40	Does nanoparticle activity depend upon size and crystal phase?. Nanotoxicology, 2008, 2, 33-42.	3.0	370
41	Effects of subchronic inhalation exposure to carbon black nanoparticles in the nasal airways of laboratory rats. International Journal of Nanotechnology, 2008, 5, 30.	0.2	10
42	Effects of On-Road Highway Aerosol Exposures on Autonomic Responses in Aged, Spontaneously Hypertensive Rats. Inhalation Toxicology, 2007, 19, 1-12.	1.6	72
43	Metal Particles and Extrapulmonary Transport: Oberdörster and Elder Respond. Environmental Health Perspectives, 2007, 115, .	6.0	2
44	Testing Nanomaterials of Unknown Toxicity: An Example Based on Platinum Nanoparticles of Different Shapes. Advanced Materials, 2007, 19, 3124-3129.	21.0	96
45	Metal Particles and Extrapulmonary Transport: Oberdörster and Elder Respond. Environmental Health Perspectives, 2007, 115, A70-A71.	6.0	1
46	Translocation of Inhaled Ultrafine Manganese Oxide Particles to the CentralNervous System. Environmental Health Perspectives, 2006, 114, 1172-1178.	6.0	968
47	A Comparative Dose-Related Response of Several Key Pro- and Antiinflammatory Mediators in the Lungs of Rats, Mice, and Hamsters After Subchronic Inhalation of Carbon Black. Journal of Occupational and Environmental Medicine, 2006, 48, 1265-1278.	1.7	49
48	Translocation and effects of ultrafine particles outside of the lung. Clinics in Occupational and Environmental Medicine, 2006, 5, 785-96.	0.5	80
49	The Rat Ear Vein Model for Investigating In Vivo Thrombogenicity of Ultrafine Particles (UFP). Toxicological Sciences, 2005, 85, 983-989.	3.1	87
50	LUNG INFLAMMATION INDUCED BY ENDOTOXIN IS ENHANCED IN RATS DEPLETED OF ALVEOLAR MACROPHAGES WITH AEROSOLIZED CLODRONATE. Experimental Lung Research, 2005, 31, 527-546.	1.2	23
51	Effects of Subchronically Inhaled Carbon Black in Three Species. I. Retention Kinetics, Lung Inflammation, and Histopathology. Toxicological Sciences, 2005, 88, 614-629.	3.1	186
52	On-Road Exposure to Highway Aerosols. 2. Exposures of Aged, Compromised Rats. Inhalation Toxicology, 2004, 16, 41-53.	1.6	44
53	INFLAMMATORY CELL RECRUITMENT FOLLOWING THORACIC IRRADIATION. Experimental Lung Research, 2004, 30, 369-382.	1.2	97
54	Systemic Effects of Inhaled Ultrafine Particles in Two Compromised, Aged Rat Strains. Inhalation Toxicology, 2004, 16, 461-471.	1.6	66

#	Article	IF	CITATIONS
55	EFFICIENT DEPLETION OF ALVEOLAR MACROPHAGES USING INTRATRACHEALLY INHALED AEROSOLS OF LIPOSOME-ENCAPSULATED CLODRONATE. Experimental Lung Research, 2004, 30, 105-120.	1.2	15
56	EXTRAPULMONARY TRANSLOCATION OF ULTRAFINE CARBON PARTICLES FOLLOWING WHOLE-BODY INHALATION EXPOSURE OF RATS. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2002, 65, 1531-1543.	2.3	892
57	PULMONARY INFLAMMATORY RESPONSE TO INHALED ULTRAFINE PARTICLES IS MODIFIED BY AGE, OZONE EXPOSURE, AND BACTERIAL TOXIN. Inhalation Toxicology, 2000, 12, 227-246.	1.6	93