Stefan Jentsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9112548/publications.pdf

Version: 2024-02-01

394421 552781 3,538 27 19 26 citations h-index g-index papers 32 32 32 6677 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sumo, ubiquitin's mysterious cousin. Nature Reviews Molecular Cell Biology, 2001, 2, 202-210.	37.0	685
2	Activation of a Membrane-Bound Transcription Factor by Regulated Ubiquitin/Proteasome-Dependent Processing. Cell, 2000, 102, 577-586.	28.9	540
3	Protein Group Modification and Synergy in the SUMO Pathway as Exemplified in DNA Repair. Cell, 2012, 151, 807-820.	28.9	404
4	Autophagic Clearance of PolyQ Proteins Mediated by Ubiquitin-Atg8 Adaptors of the Conserved CUET Protein Family. Cell, 2014, 158, 549-563.	28.9	285
5	Cdc48 (p97): a †molecular gearbox' in the ubiquitin pathway?. Trends in Biochemical Sciences, 2007, 32, 6-11.	7.5	264
6	A DNA-Dependent Protease Involved in DNA-Protein Crosslink Repair. Cell, 2014, 158, 327-338.	28.9	218
7	Control of Nuclear Activities by Substrate-Selective and Protein-Group SUMOylation. Annual Review of Genetics, 2013, 47, 167-186.	7.6	214
8	Mechanisms and principles of homology search during recombination. Nature Reviews Molecular Cell Biology, 2014, 15, 369-383.	37.0	153
9	Selective autophagy degrades nuclear pore complexes. Nature Cell Biology, 2020, 22, 159-166.	10.3	86
10	A Selective Autophagy Pathway for Phase-Separated Endocytic Protein Deposits. Molecular Cell, 2020, 80, 764-778.e7.	9.7	82
11	DNA–protein crosslink repair: proteases as DNA repair enzymes. Trends in Biochemical Sciences, 2015, 40, 67-71.	7.5	81
12	Role of the ubiquitin-like protein Hub1 in splice-site usage and alternative splicing. Nature, 2011, 474, 173-178.	27.8	79
13	DNA–protein crosslink repair. Nature Reviews Molecular Cell Biology, 2015, 16, 455-460.	37.0	75
14	Receptor oligomerization guides pathway choice between proteasomal and autophagic degradation. Nature Cell Biology, 2017, 19, 732-739.	10.3	75
15	The ubiquitinâ€ike protein HUB1 forms SDSâ€resistant complexes with cellular proteins in the absence of ATP. EMBO Reports, 2003, 4, 1169-1174.	4.5	54
16	The INO80 Complex Removes H2A.Z to Promote Presynaptic Filament Formation during Homologous Recombination. Cell Reports, 2017, 19, 1294-1303.	6.4	51
17	Chaperone-Mediated Protein Disaggregation Triggers Proteolytic Clearance of Intra-nuclear Protein Inclusions. Cell Reports, 2020, 31, 107680.	6.4	43
18	Pathway choice between proteasomal and autophagic degradation. Autophagy, 2017, 13, 1799-1800.	9.1	32

#	Article	IF	CITATIONS
19	The conserved ubiquitin-like protein Hub1 plays a critical role in splicing in human cells. Journal of Molecular Cell Biology, 2014, 6, 312-323.	3.3	30
20	Error-Prone Splicing Controlled by the Ubiquitin Relative Hub1. Molecular Cell, 2017, 67, 423-432.e4.	9.7	22
21	Identification of Substrates of Protein-Group SUMOylation. Methods in Molecular Biology, 2016, 1475, 219-231.	0.9	17
22	ESCRT recruitment by the inner nuclear membrane protein Heh1 is regulated by Hub1-mediated alternative splicing. Journal of Cell Science, 2020, 133 , .	2.0	14
23	Nucleolar release of rDNA repeats for repair involves SUMO-mediated untethering by the Cdc48/p97 segregase. Nature Communications, 2021, 12, 4918.	12.8	12
24	Slx5/Slx8â€dependent ubiquitin hotspots on chromatin contribute to stress tolerance. EMBO Journal, 2019, 38, .	7.8	8
25	Regulatory Functions of Ubiquitin and SUMO in DNA Repair Pathways. Sub-Cellular Biochemistry, 2010, 54, 184-194.	2.4	7
26	A SUMO-dependent pathway controls elongating RNA Polymerase II upon UV-induced damage. Scientific Reports, 2019, 9, 17914.	3.3	5
27	Travels with ubiquitin: from protein degradation to DNA repair. EMBO Molecular Medicine, 2011, 3, 72-74.	6.9	O