Xifeng Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9112244/publications.pdf Version: 2024-02-01

XIFENC DINC

#	Article	IF	CITATIONS
1	Enhanced visible-light-response photocatalytic activity of bismuth ferrite nanoparticles. Journal of Alloys and Compounds, 2011, 509, 6585-6588.	5.5	133
2	Cation deficiency enabled fast oxygen reduction reaction for a novel SOFC cathode with promoted CO2 tolerance. Applied Catalysis B: Environmental, 2019, 243, 546-555.	20.2	97
3	Electrode redox properties of Ba1â^'xLaxFeO3â^'Î^ as cobalt free cathode materials for intermediate-temperature SOFCs. International Journal of Hydrogen Energy, 2014, 39, 12092-12100.	7.1	57
4	Effects of cation substitution on thermal expansion and electrical properties of lanthanum chromites. Journal of Alloys and Compounds, 2006, 425, 318-322.	5.5	56
5	Synthesis and characterization of doped LaCrO3 perovskite prepared by EDTA–citrate complexing method. Journal of Alloys and Compounds, 2008, 458, 346-350.	5.5	54
6	Cation deficiency design: A simple and efficient strategy for promoting oxygen evolution reaction activity of perovskite electrocatalyst. Electrochimica Acta, 2018, 259, 1004-1010.	5.2	44
7	Promotion on electrochemical performance of a cation deficient SrCo 0.7 Nb 0.1 Fe 0.2 O 3â^'δ perovskite cathode for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2017, 354, 26-33.	7.8	42
8	High-performance, ceria-based solid oxide fuel cells fabricated at low temperatures. Journal of Power Sources, 2013, 241, 454-459.	7.8	41
9	SmBa0.5Sr0.5Cu2O5+δ and SmBa0.5Sr0.5CuFeO5+δ layered perovskite oxides as cathodes for IT-SOFCs. International Journal of Hydrogen Energy, 2012, 37, 2546-2551.	7.1	39
10	NdBaCu2O5+δand NdBa0.5Sr0.5Cu2O5+δlayered perovskite oxides as cathode materials for IT-SOFCs. International Journal of Hydrogen Energy, 2015, 40, 16477-16483.	7.1	39
11	Electrochemical performance of La0.7Sr0.3CuO3â~'δ–Sm0.2Ce0.8O2â~'δ functional graded composite cathode for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2010, 35, 1742-1748.	7.1	38
12	Infiltrated Pr2NiO4 as promising bi-electrode for symmetrical solid oxide fuel cells. International Journal of Hydrogen Energy, 2018, 43, 8953-8961.	7.1	38
13	Evaluation of Sr substituted Nd2CuO4 as a potential cathode material for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2009, 34, 6869-6875.	7.1	36
14	Enhanced oxygen reduction activity on surface-decorated perovskite La 0.6 Ni 0.4 FeO 3 cathode for solid oxide fuel cells. Electrochimica Acta, 2015, 163, 204-212.	5.2	34
15	Novel layered perovskite SmBaCu2O5+l´as a potential cathode for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2011, 36, 15715-15721.	7.1	29
16	Enhanced ionic conductivity of apatite-type lanthanum silicate electrolyte for IT-SOFCs through copper doping. Journal of Power Sources, 2016, 306, 630-635.	7.8	29
17	Thermal expansion and electrochemical performance of La0.7Sr0.3CuO3â~îſ–Sm0.2Ce0.8O2â~îſ composite cathode for IT-SOFCs. Journal of Alloys and Compounds, 2009, 481, 845-850.	5.5	27
18	Photovoltaic, photo-impedance, and photo-capacitance effects of the flexible (111) BiFeO3 film. Applied Physics Letters, 2019, 115, .	3.3	26

XIFENG DING

#	Article	IF	CITATIONS
19	La0.6Ca0.4Fe0.8Ni0.2O3â^'δ– Sm0.2Ce0.8O1.9 composites as symmetrical bi-electrodes for solid oxide fuel cells through infiltration and in-situ exsolution. International Journal of Hydrogen Energy, 2017, 42, 24968-24977.	7.1	25
20	Characterization and electrochemical performance of (Ba0.6Sr0.4)1â´'xLaxCo0.6Fe0.4O3â´´l´ (x=0, 0.1) cathode for intermediate temperature solid oxide fuel cells. Materials Research Bulletin, 2010, 45, 1271-1277.	5.2	21
21	Electrical conductivity, thermal expansion and electrochemical properties of Fe-doped La0.7Sr0.3CuO3â^î´cathodes for solid oxide fuel cells. Journal of Alloys and Compounds, 2009, 475, 418-421.	5.5	20
22	Enhanced SOFC cathode performance by infiltrating Ba0.5Sr0.5Co0.8Fe0.2O3â^î^ nanoparticles for intermediate temperature solid oxide fuel cells. Fuel Processing Technology, 2015, 135, 14-19.	7.2	19
23	Trade-off between oxygen reduction reaction activity and CO ₂ stability in a cation doped Ba _{0.9} Co _{0.7} Fe _{0.3} O _{3â^îr} perovskite cathode for solid oxide fuel cells. Sustainable Energy and Fuels, 2020, 4, 5229-5237.	4.9	19
24	Enabled fast cathode kinetics for intermediate-temperature solid oxide fuel cell with improved CO2 poisoning robustness: La2NiO4 surfaced-modified SrCo0.8Nb0.1Ta0.1O3-δ composite. Journal of Power Sources, 2021, 506, 230057.	7.8	19
25	Enhanced ionic conductivity of Sm0.2Ce0.8O2â^î^ electrolyte for solid oxide fuel cells through doping transition metals. Journal of Materials Science: Materials in Electronics, 2015, 26, 3664-3669.	2.2	17
26	In-situ strategy to suppress chromium poisoning on La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes of solid oxide fuel cells. International Journal of Hydrogen Energy, 2019, 44, 30401-30408.	7.1	16
27	Modulation of electronic structure and oxygen vacancies of perovskites SrCoO3- \hat{i} by sulfur doping enables highly active and stable oxygen evolution reaction. Electrochimica Acta, 2021, 390, 138872.	5.2	16
28	Enhancing the Catalytic Activity and Coking Tolerance of the Perovskite Anode for Solid Oxide Fuel Cells through <i>In Situ</i> Exsolution of Co-Fe Nanoparticles. ACS Catalysis, 2022, 12, 828-836.	11.2	15
29	A highly active and stable cathode for oxygen reduction in intermediate-temperature solid oxide fuel cells. Sustainable Energy and Fuels, 2020, 4, 1168-1179.	4.9	14
30	Cobalt-free Sr0.7Y0.3CuO2+l̂´as a cathode for intermediate-temperature solid oxide fuel cell. International Journal of Hydrogen Energy, 2014, 39, 1030-1038.	7.1	11
31	Synergistically enhancing CO2-tolerance and oxygen reduction reaction activity of cobalt-free dual-phase cathode for solid oxide fuel cells. International Journal of Hydrogen Energy, 2020, 45, 34058-34068.	7.1	11
32	Enhancing oxygen reduction activity of perovskite cathode decorated with core@shell nano catalysts. International Journal of Hydrogen Energy, 2019, 44, 22122-22128.	7.1	10
33	High-performance and CO2‑resistant cathode toward electrocatalytic oxygen reduction for solid oxide fuel cells: Doped ceria and SrCo0.7Nb0.1Ni0.2O3-1´ composite. Electrochimica Acta, 2021, 398, 139323.	5.2	9
34	Improved electrochemical activity and stability of LaNi 0.6 Fe 0.4 O 3-δ cathodes achieved by an in - situ reaction. Electrochimica Acta, 2017, 236, 378-383.	5.2	8
35	Coordinating of thermal and dielectric properties for cyanate ester composites filled with silica coated sulfonated graphene oxide hybrids. Polymer Composites, 2018, 39, E1565.	4.6	8
36	Enhancing oxygen reduction activity and CO2-tolerance of A-site-deficient BaCo0.7Fe0.3O3-δ cathode by surface-decoration with Pr6O11 particles. International Journal of Hydrogen Energy, 2020, 45, 31070-31079.	7.1	8

#	Article	IF	CITATIONS
37	Efficient and stable symmetrical solid oxide fuel cell via A-site non-stoichiometry. Electrochimica Acta, 2022, 425, 140697.	5.2	5