
Konrad J Kossacki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9112062/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long-term evolution of the global carbon cycle: historic minimum of global surface temperature at present. Tellus, Series B: Chemical and Physical Meteorology, 2022, 54, 325.	1.6	22
2	Comets, sliding of surface dust II. Icarus, 2022, 379, 114946.	2.5	7
3	Sublimation of porous granular ice in vacuum. Icarus, 2021, 368, 114613.	2.5	8
4	Dynamics of material ejected from the Hatmehit depression and landslides on comet 67P/Churyumov–Gerasimenko. Planetary and Space Science, 2021, 209, 105358.	1.7	0
5	Influence of landslides on the erosion of slopes on comet 9P/Tempel 1: Laboratory experiments and numerical simulations. Icarus, 2020, 340, 113529.	2.5	4
6	Comets, sliding of surface dust. Icarus, 2020, 348, 113781.	2.5	6
7	Local activity of comets: an indicator of non-uniform composition. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2050-2055.	4.4	2
8	Sublimation of buried cometary ice. Icarus, 2019, 329, 72-78.	2.5	9
9	Sublimation of cometary ices in the presence of organic volatiles II. Icarus, 2019, 319, 470-475.	2.5	6
10	The evolution of gently sloping mantled deposits on Comet 67P/Churyumov-Gerasimenko. Icarus, 2019, 319, 381-391.	2.5	1
11	Comet 67p/Churyumov–Gerasimenko, possible origin of the depression Hatmehit. Icarus, 2018, 305, 1-14.	2.5	17
12	Depression Formation On Comet 67P/Churyumov-Gerasimenko. , 2018, , .		0
13	Sublimation of cometary ices in the presence of organic volatiles. Icarus, 2017, 294, 227-233.	2.5	15
14	Comet 67P/Churyumov–Gerasimenko, location of pristine material?. Planetary and Space Science, 2016, 125, 96-104.	1.7	2
15	Activity of Comet C/2006 W3 Christensen. Icarus, 2015, 250, 595-601.	2.5	4
16	Comet 67P/Churyumov–Gerasimenko: Hardening of the sub-surface layer. Icarus, 2015, 260, 464-474.	2.5	28
17	Comet 9P/Tempel 1: Evolution of the surface. Icarus, 2015, 245, 348-354.	2.5	6
18	Temperature dependence of the sublimation rate of water ice: Influence of impurities. Icarus, 2014, 233, 101-105	2.5	44

Konrad J Kossacki

#	Article	IF	CITATIONS
19	Seasonal flows on dark martian slopes, thermal condition for liquescence of salts. Icarus, 2014, 233, 126-130.	2.5	9
20	Comet 67P/CG: Influence of the sublimation coefficient on the temperature and outgassing. Icarus, 2013, 224, 172-177.	2.5	8
21	Activity of Comet 29P/Schwassmann–Wachmann 1. Icarus, 2013, 225, 111-121.	2.5	32
22	Main Belt Comet P/2008 R1 Garradd: Duration of activity. Icarus, 2012, 217, 66-76.	2.5	7
23	Thermal convection in the porous methane-soaked regolith in Titan: Finite amplitude convection. Icarus, 2012, 217, 130-143.	2.5	9
24	The evolution of exposed ice in a fresh mid-latitude crater on Mars. Icarus, 2011, 211, 195-206.	2.5	7
25	Comet 17P/Holmes: Possibility of a CO driven explosion. Icarus, 2011, 212, 847-857.	2.5	23
26	Crystallization of ice in Comet 17P/Holmes: Probably not responsible for the explosive 2007 megaburst. Icarus, 2010, 207, 320-340.	2.5	12
27	Interfacial liquid water on Mars and its potential role in formation of hill and dune gullies. Icarus, 2010, 210, 83-91.	2.5	6
28	Small-scale trench in the north polar region of Mars: Evolution of surface frost and ground ice concentration. Icarus, 2009, 199, 75-85.	2.5	6
29	Thermal convection in the porous methane-soaked regolith of Titan: Investigation of stability. Icarus, 2009, 202, 599-606.	2.5	12
30	Sublimation-driven evolution of the local radius and the moment of inertia of a long-period comet. Acta Geophysica, 2009, 57, 509-535.	2.0	1
31	Comet 9P/Tempel 1: Sublimation beneath the dust cover. Icarus, 2008, 195, 705-724.	2.5	23
32	Evolution of depressions on Comet 67P/Churyumov–Gerasimenko: Role of ice metamorphism. Icarus, 2006, 184, 221-238.	2.5	12
33	Comet 67P/Churyumov–Gerasimenko: Modeling of orientation and structure. Planetary and Space Science, 2006, 54, 15-27.	1.7	20
34	Possible remnants of a frozen mud lake in southern Elysium, Mars. Icarus, 2006, 181, 363-374.	2.5	12
35	Non-uniform seasonal defrosting of subpolar dune field on Mars. Icarus, 2004, 168, 201-204.	2.5	17
36	Seasonal melting of surface water ice condensing in martian gullies. Icarus, 2004, 171, 272-283.	2.5	40

Konrad J Kossacki

#	Article	IF	CITATIONS
37	Surface temperature of Martian regolith with polygonal features: influence of the subsurface water ice. Planetary and Space Science, 2003, 51, 569-580.	1.7	13
38	Long-term evolution of the global carbon cycle: historic minimum of global surface temperature at present. Tellus, Series B: Chemical and Physical Meteorology, 2002, 54, 325-343.	1.6	9
39	Effect of surface roughness on ice distribution in the south subpolar region of Mars. Planetary and Space Science, 2001, 49, 437-445.	1.7	8
40	Sublimation coefficient of water ice under simulated cometary-like conditions. Planetary and Space Science, 1999, 47, 1521-1530.	1.7	52
41	Modelling the global carbon cycle for the past and future evolution of the earth system. Chemical Geology, 1999, 159, 305-317.	3.3	60
42	Comet 46P/Wirtanen: The Influence of Grain Sintering on the Evolution Layer. , 1999, , 309-313.		0
43	Metamorphism of Solar System Ices. Astrophysics and Space Science Library, 1998, , 119-138.	2.7	17
44	Hiding Titan's ocean: densification and hydrocarbon storage in an icy regolith. Planetary and Space Science, 1996, 44, 1029-1037.	1.7	45
45	The influence of grain sintering on the thermoconductivity of porous ice. Planetary and Space Science, 1994, 42, 383-389.	1.7	40