Tommy Andersson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9111852/publications.pdf

Version: 2024-02-01

75 papers 3,736 citations

94433 37 h-index 60 g-index

76 all docs

76 docs citations

76 times ranked 4704 citing authors

#	Article	IF	CITATIONS
1	WNT5A induces release of exosomes containing pro-angiogenic and immunosuppressive factors from malignant melanoma cells. Molecular Cancer, 2014, 13, 88.	19.2	213
2	p38-MAPK Signals Survival by Phosphorylation of Caspase-8 and Caspase-3 in Human Neutrophils. Journal of Experimental Medicine, 2004, 199, 449-458.	8.5	184
3	Wnt-5a Protein Expression in Primary Dukes B Colon Cancers Identifies a Subgroup of Patients with Good Prognosis. Cancer Research, 2005, 65, 9142-9146.	0.9	173
4	Loss of Wnt-5a protein is associated with early relapse in invasive ductal breast carcinomas. Cancer Research, 2002, 62, 409-16.	0.9	152
5	Wnt-5a/Ca 2+ -Induced NFAT Activity Is Counteracted by Wnt-5a/Yes-Cdc42-Casein Kinase 1α Signaling in Human Mammary Epithelial Cells. Molecular and Cellular Biology, 2006, 26, 6024-6036.	2.3	144
6	Calcium signaling capacity of the CD11b/CD18 integrin on human neutrophils*1. Experimental Cell Research, 1991, 195, 504-508.	2.6	132
7	A t-butyloxycarbonyl-modified Wnt5a-derived hexapeptide functions as a potent antagonist of Wnt5a-dependent melanoma cell invasion. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19473-19478.	7.1	123
8	p38 MAPK mediates TNF-induced apoptosis in endothelial cells via phosphorylation and downregulation of Bcl-xL. Experimental Cell Research, 2004, 298, 632-642.	2.6	118
9	The Wnt-5a–Derived Hexapeptide Foxy-5 Inhibits Breast Cancer Metastasis <i>In vivo</i> by Targeting Cell Motility. Clinical Cancer Research, 2008, 14, 6556-6563.	7.0	110
10	A Formylated Hexapeptide Ligand Mimics the Ability of Wnt-5a to Impair Migration of Human Breast Epithelial Cells. Journal of Biological Chemistry, 2006, 281, 2740-2749.	3.4	107
11	Repression of Wnt-5a impairs DDR1 phosphorylation and modifies adhesion and migration of mammary cells. Journal of Cell Science, 2001, 114, 2043-2053.	2.0	101
12	Expression and signaling activity of Wnt- $5a/d$ iscoidin domain receptor- 1 and Syk plays distinct but decisive roles in breast cancer patient survival. Clinical Cancer Research, 2005, 11 , 520-8.	7.0	89
13	Wnt-5a mRNA translation is suppressed by the Elav-like protein HuR in human breast epithelial cells. Nucleic Acids Research, 2006, 34, 3988-3999.	14.5	86
14	Protein Phosphatase 2A Regulates Apoptosis in Neutrophils by Dephosphorylating Both p38 MAPK and Its Substrate Caspase 3. Journal of Biological Chemistry, 2005, 280, 6238-6244.	3.4	84
15	Ca2+ signalling mechanisms of the \hat{l}^2 2 integrin on neutrophils: involvement of phospholipase \hat{Cl}^3 2 and Ins(1,4,5)P3. Biochemical Journal, 1996, 317, 403-409.	3.7	79
16	Wnt-5a and G-protein signaling are required for collagen-induced DDR1 receptor activation and normal mammary cell adhesion. International Journal of Cancer, 2003, 103, 344-351.	5.1	70
17	Wnt-5a-induced Phosphorylation of DARPP-32 Inhibits Breast Cancer Cell Migration in a CREB-dependent Manner. Journal of Biological Chemistry, 2009, 284, 27533-27543.	3.4	70
18	Monokines Mediate Decreased Hepatic Glucocorticoid Binding in Endotoxemia. Journal of Leukocyte Biology, 1991, 49, 236-244.	3.3	69

#	Article	IF	Citations
19	Wnt-5a-CKl \hat{l} ± Signaling Promotes \hat{l}^2 -Catenin/E-Cadherin Complex Formation and Intercellular Adhesion in Human Breast Epithelial Cells. Journal of Biological Chemistry, 2009, 284, 10968-10979.	3.4	69
20	p38 Mitogenâ€activated protein kinase and phosphatidylinositol 3â€kinase activities have opposite effects on human neutrophil apoptosis. FASEB Journal, 2002, 16, 1-22.	0.5	68
21	WNT5A Signaling Contributes to $\hat{Al^2}$ -Induced Neuroinflammation and Neurotoxicity. PLoS ONE, 2011, 6, e22920.	2.5	64
22	Treatment with the WNT5A-mimicking peptide Foxy-5 effectively reduces the metastatic spread of WNT5A-low prostate cancer cells in an orthotopic mouse model. PLoS ONE, 2017, 12, e0184418.	2.5	58
23	TNK2 preserves epidermal growth factor receptor expression on the cell surface and enhances migration and invasion of human breast cancer cells. Breast Cancer Research, 2008, 10, R36.	5.0	55
24	Interleukinâ€6 drives melanoma cell motility through p38αâ€MAPKâ€dependent upâ€regulation of WNT5A expression. Molecular Oncology, 2014, 8, 1365-1378.	4.6	53
25	Phosphorylation of DARPP-32 regulates breast cancer cell migration downstream of the receptor tyrosine kinase DDR1. Experimental Cell Research, 2006, 312, 4011-4018.	2.6	52
26	WNT5A signaling impairs breast cancer cell migration and invasion via mechanisms independent of the epithelial-mesenchymal transition. Journal of Experimental and Clinical Cancer Research, 2016, 35, 144.	8.6	48
27	Elevated Level of Wnt5a Protein in Localized Prostate Cancer Tissue Is Associated with Better Outcome. PLoS ONE, 2011, 6, e26539.	2.5	47
28	Nonâ€canonical WNT5A signaling upâ€regulates the expression of the tumor suppressor 15â€PGDH and induces differentiation of colon cancer cells. Molecular Oncology, 2016, 10, 1415-1429.	4.6	47
29	WNT5A as a therapeutic target in breast cancer. Cancer and Metastasis Reviews, 2018, 37, 767-778.	5.9	47
30	Cysteinyl leukotriene receptor expression pattern affects migration of breast cancer cells and survival of breast cancer patients. International Journal of Cancer, 2011, 129, 9-22.	5.1	46
31	Oxidized low-density lipoprotein induces calpain-dependent cell death and ubiquitination of caspase 3 in HMEC-1 endothelial cells. Biochemical Journal, 2003, 374, 403-411.	3.7	43
32	Methylation and Loss of Secreted Frizzled-Related Protein 3 Enhances Melanoma Cell Migration and Invasion. PLoS ONE, 2011, 6, e18674.	2.5	43
33	The STAT3 Inhibitor Galiellalactone Effectively Reduces Tumor Growth and Metastatic Spread in an Orthotopic Xenograft Mouse Model of Prostate Cancer. European Urology, 2016, 69, 400-404.	1.9	43
34	WNT5A-mediated Â-catenin-independent signalling is a novel regulator of cancer cell metabolism. Carcinogenesis, 2014, 35, 784-794.	2.8	42
35	Chemotactic Peptide-induced Activation of Ras in Human Neutrophils Is Associated with Inhibition of p120-GAP Activity. Journal of Biological Chemistry, 1997, 272, 23448-23454.	3.4	41
36	Down-regulation of Rac Activity during \hat{l}^2 2 Integrin-mediated Adhesion of Human Neutrophils. Journal of Biological Chemistry, 2003, 278, 24181-24188.	3.4	41

#	Article	IF	Citations
37	A Wnt5a signaling pathway in the pathogenesis of HIV-1 gp120-induced pain. Pain, 2015, 156, 1311-1319.	4.2	39
38	Role of p190RhoGAP in \hat{I}^2 2 Integrin Regulation of RhoA in Human Neutrophils. Journal of Immunology, 2001, 166, 6311-6322.	0.8	38
39	WNTâ€5A triggers Cdc42 activation leading to an ERK1/2 dependent decrease in MMP9 activity and invasive migration of breast cancer cells. Molecular Oncology, 2013, 7, 870-883.	4.6	38
40	Migration and invasion of oral squamous carcinoma cells is promoted by <scp>WNT</scp> 5A, a regulator of cancer progression. Journal of Oral Pathology and Medicine, 2015, 44, 776-784.	2.7	35
41	Does protein kinase C control receptor-mediated phagocytosis in human neutrophils?. FEBS Letters, 1988, 239, 371-375.	2.8	33
42	Dual Action of cAMP-Dependent Protein Kinase on Granulocyte Movement. Biochemical and Biophysical Research Communications, 1997, 235, 445-450.	2.1	32
43	Critical role for complement receptorâ€,,3 (CD11b/CD18), but not for Fc receptors, in killing ofStreptococcus pyogenesby neutrophils in human immune serum. European Journal of Immunology, 2005, 35, 1472-1481.	2.9	30
44	Reduced production and uptake of lactate are essential for the ability of WNT5A signaling to inhibit breast cancer cell migration and invasion. Oncotarget, 2017, 8, 71471-71488.	1.8	29
45	Leukotriene D4-induced mobilization of intracellular Ca2+ in epithelial cells is critically dependent on activation of the small GTP-binding protein Rho. Biochemical Journal, 1996, 316, 239-245.	3.7	28
46	Clustering of \hat{l}^2 2-Integrins on Human Neutrophils Activates Dual Signaling Pathways to PtdIns 3-Kinase. Experimental Cell Research, 2000, 256, 257-263.	2.6	26
47	Nitric Oxide Produced in Response to Engagement of \hat{l}^2 2 Integrins on Human Neutrophils Activates the Monomeric GTPases Rap1 and Rap2 and Promotes Adhesion. Journal of Biological Chemistry, 2006, 281, 35008-35020.	3.4	25
48	Wnt-5a signaling restores tamoxifen sensitivity in estrogen receptor-negative breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3919-3924.	7.1	25
49	Direct or C5a-induced Activation of Heterotrimeric Gi2 Proteins in Human Neutrophils Is Associated with Interaction between Formyl Peptide Receptors and the Cytoskeleton. Journal of Biological Chemistry, 1996, 271, 15267-15271.	3.4	24
50	The WNT5A Agonist Foxy5 Reduces the Number of Colonic Cancer Stem Cells in a Xenograft Mouse Model of Human Colonic Cancer. Anticancer Research, 2019, 39, 1719-1728.	1.1	24
51	The Ca2+ Signaling Capacity of the \hat{I}^2 2-Integrin on HL60-Granulocytic Cells Is Abrogated Following Phosphorylation of Its CD18-Chain: Relation to Impaired Protein Tyrosine Phosphorylation. Experimental Cell Research, 1995, 217, 140-148.	2.6	23
52	Demonstration of a WNT5A-IL-6 positive feedback loop in melanoma cells: Dual interference of this loop more effectively impairs melanoma cell invasion. Oncotarget, 2016, 7, 37790-37802.	1.8	23
53	Streptococcal M5 Protein Prevents Neutrophil Phagocytosis by Interfering with CD11b/CD18 Receptor-Mediated Association and Signaling. Journal of Immunology, 2004, 172, 3798-3807.	0.8	21
54	Emphasizing the role of <scp>Wnt5a</scp> protein expression to predict favorable outcome after radical prostatectomy in patients with lowâ€grade prostate cancer. Cancer Medicine, 2012, 1, 96-104.	2.8	20

#	Article	IF	CITATIONS
55	Higher expression of <scp>WNT</scp> 5A protein in oral squamous cell carcinoma compared with dysplasia and oral mucosa with a normal appearance. European Journal of Oral Sciences, 2017, 125, 237-246.	1.5	20
56	Dual mechanisms of action of the RNA-binding protein human antigen R explains its regulatory effect on melanoma cell migration. Translational Research, 2016, 172, 45-60.	5.0	19
57	Inhibitors of Farnesyl and Geranylgeranyl Methyltransferases Prevent \hat{I}^2 2Integrin-Induced Actin Polymerization without Affecting \hat{I}^2 2Integrin-Induced Ca2+Signaling in Neutrophils. Biochemical and Biophysical Research Communications, 1996, 223, 612-617.	2.1	18
58	Therapy for BRAFi-Resistant Melanomas: Is WNT5A the Answer?. Cancers, 2015, 7, 1900-1924.	3.7	18
59	WNT5A-Induced Activation of the Protein Kinase C Substrate MARCKS Is Required for Melanoma Cell Invasion. Cancers, 2020, 12, 346.	3.7	17
60	Combination therapy targeting the elevated interleukinâ€6 level reduces invasive migration of BRAF inhibitorâ€resistant melanoma cells. Molecular Oncology, 2019, 13, 480-494.	4.6	16
61	Fgr but not Syk tyrosine kinase is a target for beta2 integrin-induced c-Cbl-mediated ubiquitination in adherent human neutrophils. Biochemical Journal, 2003, 370, 687-694.	3.7	13
62	The WNT-5a derived peptide, Foxy-5, possesses dual properties that impair progression of ERα negative breast cancer. Cell Cycle, 2009, 8, 1838-1842.	2.6	13
63	Engagement of \hat{l}^22 integrins recruits 14-3-3 proteins to c-Cbl in human neutrophils. Biochemical and Biophysical Research Communications, 2004, 317, 1000-1005.	2.1	12
64	E3B1, a human homologue of the mouse gene product Abi-1, sensitizes activation of Rap1 in response to epidermal growth factor. Experimental Cell Research, 2005, 310, 463-473.	2.6	9
65	Chemotactic Factor Receptor Activation Transiently Impairs the Ca2+ Signaling Capacity of \hat{l}^2 2 Integrins on Human Neutrophils. Experimental Cell Research, 1994, 215, 90-96.	2.6	8
66	The Prognostic Significance of Wnt-5a Expression in Primary Breast Cancer Is Extended to Premenopausal Women. PLoS ONE, 2013, 8, e70890.	2.5	7
67	The Adhesion Receptor CD-31 Can Be Primed to Rapidly Adjust the Neutrophil Cytoskeleton. Biochemical and Biophysical Research Communications, 2002, 292, 1092-1097.	2.1	6
68	Targeting Oncogenic WNT Signalling with WNT Signalling-Derived Peptides. Handbook of Experimental Pharmacology, 2021, 269, 279-303.	1.8	6
69	G-proteins and the association of ligand/receptor complexes with the cytoskeleton in human neutrophils. Biochemical Society Transactions, 1991, 19, 1127-1129.	3.4	5
70	Direct or C5a-induced activation of heterotrimeric Gi2 proteins in human neutrophils is associated with interaction between formyl peptide receptors and the cytoskeleton Journal of Biological Chemistry, 1996, 271, 25722.	3.4	5
71	Dietary supplementation of carbonate promotes spontaneous tumorigenesis in a rat gastric stump model. Scandinavian Journal of Gastroenterology, 2006, 41, 12-20.	1.5	5
72	Reduced WNT5A signaling in melanoma cells favors an amoeboid mode of invasion. Molecular Oncology, 2021, 15, 1835-1848.	4.6	5

#	Article	IF	CITATION
73	Dietary supplementation with carbonate increases expression of ornithine decarboxylase and proliferation in gastric mucosa in a rat model of gastric cancer. International Journal of Cancer, 2008, 122, 727-733.	5.1	4
74	Disruption of \hat{I}^2 2-Integrinâ \in "Cytoskeleton Coupling Abolishes the Signaling Capacity of These Integrins on Granulocytes. Biochemical and Biophysical Research Communications, 1999, 265, 164-169.	2.1	3
75	\hat{l}^22 Integrins target Rap GTPases to the plasma membrane by means of degranulation. Biochemical and Biophysical Research Communications, 2008, 376, 642-646.	2.1	2