G Eric Schaller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9111690/publications.pdf Version: 2024-02-01

C EDIC SCHALLED

#	Article	IF	CITATIONS
1	Type-A Arabidopsis Response Regulators Are Partially Redundant Negative Regulators of Cytokinin Signaling[W]. Plant Cell, 2004, 16, 658-671.	6.6	631
2	Cytokinin signaling in plant development. Development (Cambridge), 2018, 145, .	2.5	472
3	Cytokinins. The Arabidopsis Book, 2014, 12, e0168.	0.5	450
4	The Yin-Yang of Hormones: Cytokinin and Auxin Interactions in Plant Development. Plant Cell, 2015, 27, 44-63.	6.6	441
5	Multiple Type-B Response Regulators Mediate Cytokinin Signal Transduction in Arabidopsis Â. Plant Cell, 2005, 17, 3007-3018.	6.6	397
6	The Arabidopsis Histidine Phosphotransfer Proteins Are Redundant Positive Regulators of Cytokinin Signaling. Plant Cell, 2006, 18, 3073-3087.	6.6	392
7	Type B Response Regulators of <i>Arabidopsis</i> Play Key Roles in Cytokinin Signaling and Plant Development. Plant Cell, 2008, 20, 2102-2116.	6.6	386
8	Ethylene Signal Transduction. Annals of Botany, 2005, 95, 901-915.	2.9	377
9	A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11081-11085.	7.1	353
10	Localization of the Raf-like Kinase CTR1 to the Endoplasmic Reticulum of Arabidopsis through Participation in Ethylene Receptor Signaling Complexes. Journal of Biological Chemistry, 2003, 278, 34725-34732.	3.4	323
11	Localization of the Ethylene Receptor ETR1 to the Endoplasmic Reticulum of Arabidopsis. Journal of Biological Chemistry, 2002, 277, 19861-19866.	3.4	305
12	Cytokinin Regulates Type-A <i>Arabidopsis</i> Response Regulator Activity and Protein Stability via Two-Component Phosphorelay. Plant Cell, 2008, 19, 3901-3914.	6.6	240
13	Identification of Cytokinin-Responsive Genes Using Microarray Meta-Analysis and RNA-Seq in Arabidopsis Â. Plant Physiology, 2013, 162, 272-294.	4.8	230
14	The Ethylene Response Mediator ETR1 from Arabidopsis Forms a Disulfide-linked Dimer. Journal of Biological Chemistry, 1995, 270, 12526-12530.	3.4	228
15	Two-Component Elements Mediate Interactions between Cytokinin and Salicylic Acid in Plant Immunity. PLoS Genetics, 2012, 8, e1002448.	3.5	222
16	Cytokinin and the cell cycle. Current Opinion in Plant Biology, 2014, 21, 7-15.	7.1	215
17	Ethylene Perception by the ERS1 Protein in Arabidopsis. Plant Physiology, 2000, 123, 1449-1458.	4.8	210
18	Two-Component Systems and Their Co-Option for Eukaryotic Signal Transduction. Current Biology, 2011, 21, R320-R330.	3.9	202

G ERIC SCHALLER

#	Article	IF	CITATIONS
19	Characterization of Genes Involved in Cytokinin Signaling and Metabolism from Rice Â. Plant Physiology, 2012, 158, 1666-1684.	4.8	197
20	<i>Arabidopsis</i> type B cytokinin response regulators ARR1, ARR10, and ARR12 negatively regulate plant responses to drought. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3090-3095.	7.1	186
21	Functional Characterization of the GATA Transcription Factors GNC and CGA1 Reveals Their Key Role in Chloroplast Development, Growth, and Division in Arabidopsis Â. Plant Physiology, 2012, 160, 332-348.	4.8	172
22	The Relationship between Ethylene Binding and Dominant Insensitivity Conferred by Mutant Forms of the ETR1 Ethylene Receptor. Plant Physiology, 1999, 121, 291-300.	4.8	156
23	Type-B Response Regulators Display Overlapping Expression Patterns in Arabidopsis. Plant Physiology, 2004, 135, 927-937.	4.8	156
24	Mutational Analysis of the Ethylene Receptor ETR1. Role of the Histidine Kinase Domain in Dominant Ethylene Insensitivity. Plant Physiology, 2002, 128, 1428-1438.	4.8	155
25	Cytokinin induces genome-wide binding of the type-B response regulator ARR10 to regulate growth and development in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5995-E6004.	7.1	154
26	Cytokinin Induces Cell Division in the Quiescent Center of the Arabidopsis Root Apical Meristem. Current Biology, 2013, 23, 1979-1989.	3.9	151
27	Type-B response regulators ARR1 and ARR12 regulate expression of AtHKT1;1 and accumulation of sodium in Arabidopsis shoots. Plant Journal, 2010, 64, 753-763.	5.7	145
28	Ligand-induced Degradation of the Ethylene Receptor ETR2 through a Proteasome-dependent Pathway in Arabidopsis. Journal of Biological Chemistry, 2007, 282, 24752-24758.	3.4	137
29	A strong constitutive ethylene-response phenotype conferred on Arabidopsis plants containing null mutations in the ethylene receptors ETR1 and ERS1. BMC Plant Biology, 2007, 7, 3.	3.6	137
30	Two-Component Signaling Elements and Histidyl-Aspartyl Phosphorelays ^{â€} . The Arabidopsis Book, 2008, 6, e0112.	0.5	137
31	Heteromeric Interactions among Ethylene Receptors Mediate Signaling in Arabidopsis. Journal of Biological Chemistry, 2008, 283, 23801-23810.	3.4	131
32	Ethylene and the regulation of plant development. BMC Biology, 2012, 10, 9.	3.8	131
33	Ethylene Inhibits Cell Proliferation of the Arabidopsis Root Meristem. Plant Physiology, 2015, 169, 338-350.	4.8	130
34	Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signalling roles in a receptor family. AoB PLANTS, 2013, 5, plt010-plt010.	2.3	127
35	Requirement of the Histidine Kinase Domain for Signal Transduction by the Ethylene Receptor ETR1. Plant Physiology, 2004, 136, 2961-2970.	4.8	112
36	SCF ^{KMD} controls cytokinin signaling by regulating the degradation of type-B response regulators. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10028-10033.	7.1	106

G ERIC SCHALLER

#	Article	IF	CITATIONS
37	The cytokinin response factors modulate root and shoot growth and promote leaf senescence in Arabidopsis. Plant Journal, 2016, 85, 134-147.	5.7	101
38	Typeâ€A response regulators are required for proper root apical meristem function through postâ€ŧranscriptional regulation of PIN auxin efflux carriers. Plant Journal, 2011, 68, 1-10.	5.7	98
39	Histidine Kinase Activity of the Ethylene Receptor ETR1 Facilitates the Ethylene Response in Arabidopsis Â Â. Plant Physiology, 2012, 159, 682-695.	4.8	93
40	Ethylene. The Arabidopsis Book, 2002, 1, e0071.	0.5	88
41	The subcellular distribution of the Arabidopsis histidine phosphotransfer proteins is independent of cytokinin signaling. Plant Journal, 2010, 62, 473-482.	5.7	88
42	Cytokinin Regulates the Etioplast-Chloroplast Transition through the Two-Component Signaling System and Activation of Chloroplast-Related Genes. Plant Physiology, 2016, 172, 464-478.	4.8	85
43	Coordination of Chloroplast Development through the Action of the GNC and GLK Transcription Factor Families. Plant Physiology, 2018, 178, 130-147.	4.8	85
44	Ethylene Regulates Levels of Ethylene Receptor/CTR1 Signaling Complexes in Arabidopsis thaliana. Journal of Biological Chemistry, 2015, 290, 12415-12424.	3.4	83
45	Functional Characterization of Type-B Response Regulators in the Arabidopsis Cytokinin Response Â. Plant Physiology, 2013, 162, 212-224.	4.8	82
46	Ethylene Receptors Function as Components of High-Molecular-Mass Protein Complexes in Arabidopsis. PLoS ONE, 2010, 5, e8640.	2.5	76
47	Cytokininâ€dependent specification of the functional megaspore in the Arabidopsis female gametophyte. Plant Journal, 2013, 73, 929-940.	5.7	74
48	Nomenclature for Two-Component Signaling Elements of Rice. Plant Physiology, 2007, 143, 555-557.	4.8	72
49	Cytokinin acts through the auxin influx carrier AUX1 to regulate cell elongation in the root. Development (Cambridge), 2016, 143, 3982-3993.	2.5	55
50	Role of <i>BASIC PENTACYSTEINE</i> transcription factors in a subset of cytokinin signaling responses. Plant Journal, 2018, 95, 458-473.	5.7	52
51	Enhancing plant regeneration in tissue culture. Plant Signaling and Behavior, 2013, 8, e25709.	2.4	48
52	The ARGOS gene family functions in a negative feedback loop to desensitize plants to ethylene. BMC Plant Biology, 2015, 15, 157.	3.6	44
53	The Role of Cytokinin During Infection of <i>Arabidopsis thaliana</i> by the Cyst Nematode <i>Heterodera schachtii</i> . Molecular Plant-Microbe Interactions, 2016, 29, 57-68.	2.6	44
54	Cytokinin modulates context-dependent chromatin accessibility through the type-B response regulators. Nature Plants, 2018, 4, 1102-1111.	9.3	44

G ERIC SCHALLER

#	Article	IF	CITATIONS
55	Inhibitors of Ethylene Biosynthesis and Signaling. Methods in Molecular Biology, 2017, 1573, 223-235.	0.9	41
56	EXO70D isoforms mediate selective autophagic degradation of type-A ARR proteins to regulate cytokinin sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27034-27043.	7.1	39
57	Role of the Cytokinin-Activated Type-B Response Regulators in Hormone Crosstalk. Plants, 2020, 9, 166.	3.5	39
58	Characterization of the cytokinin-responsive transcriptome in rice. BMC Plant Biology, 2016, 16, 260.	3.6	38
59	Dynamic patterns of expression for genes regulating cytokinin metabolism and signaling during rice inflorescence development. PLoS ONE, 2017, 12, e0176060.	2.5	38
60	Type-B response regulators of rice play key roles in growth, development, and cytokinin signaling. Development (Cambridge), 2019, 146, .	2.5	38
61	The role of receptor interactions in regulating ethylene signal transduction. Plant Signaling and Behavior, 2009, 4, 1152-1153.	2.4	34
62	Focus on Ethylene. Plant Physiology, 2015, 169, 1-2.	4.8	26
63	The HK5 and HK6 cytokinin receptors mediate diverse developmental pathways in rice. Development (Cambridge), 2020, 147, .	2.5	24
64	Amplification and Adaptation in the Ethylene Signaling Pathway. Small Methods, 2020, 4, 1900452.	8.6	13
65	A role for twoâ€component signaling elements in the Arabidopsis growth recovery response to ethylene. Plant Direct, 2018, 2, e00058.	1.9	11
66	Functional Analysis of the Rice Type-B Response Regulator RR22. Frontiers in Plant Science, 2020, 11, 577676.	3.6	8
67	Function of the pseudo phosphotransfer proteins has diverged between rice and Arabidopsis. Plant Journal, 2021, 106, 159-173.	5.7	7
68	Isolation of Endoplasmic Reticulum and Its Membrane. Methods in Molecular Biology, 2017, 1511, 119-129.	0.9	6
69	Mutagenomics: A Rapid, High-Throughput Method to Identify Causative Mutations from a Genetic Screen. Plant Physiology, 2020, 184, 1658-1673.	4.8	6
70	Metaâ€analysis of transcriptomic studies of cytokininâ€ŧreated rice roots defines a core set of cytokinin response genes. Plant Journal, 2021, 107, 1387-1402.	5.7	4
71	Behind the Screen: How a Simple Seedling Response Helped Unravel Ethylene Signaling in Plants. Plant Cell, 2019, 31, 1402-1403.	6.6	3
72	Localization of the Ethylene-Receptor Signaling Complex to the Endoplasmic Reticulum: Analysis by Two-Phase Partitioning and Density-Gradient Centrifugation. Methods in Molecular Biology, 2017, 1573, 113-131.	0.9	1

#	ARTICLE	IF	CITATIONS
73	Analysis of Ethylene Receptors: Assay for Histidine Kinase Activity. Methods in Molecular Biology, 2017, 1573, 87-99.	0.9	0
74	Analysis of Ethylene Receptor Interactions by Co-immunoprecipitation Assays. Methods in Molecular Biology, 2017, 1573, 101-112.	0.9	0