
Claudia Sala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9111305/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Benzothiazinones Kill <i>Mycobacterium tuberculosis</i> by Blocking Arabinan Synthesis. Science, 2009, 324, 801-804.	12.6	660
2	Mycobacterium tuberculosis Differentially Activates cGAS- and Inflammasome-Dependent Intracellular Immune Responses through ESX-1. Cell Host and Microbe, 2015, 17, 799-810.	11.0	341
3	Extremely potent human monoclonal antibodies from COVID-19 convalescent patients. Cell, 2021, 184, 1821-1835.e16.	28.9	180
4	Towards a new tuberculosis drug: pyridomycin – nature's isoniazid. EMBO Molecular Medicine, 2012, 4, 1032-1042.	6.9	175
5	Lansoprazole is an antituberculous prodrug targeting cytochrome bc1. Nature Communications, 2015, 6, 7659.	12.8	141
6	The PhoP-Dependent ncRNA Mcr7 Modulates the TAT Secretion System in Mycobacterium tuberculosis. PLoS Pathogens, 2014, 10, e1004183.	4.7	127
7	Simple Model for Testing Drugs against Nonreplicating <i>Mycobacterium tuberculosis</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 4150-4158.	3.2	117
8	Virulence Regulator EspR of Mycobacterium tuberculosis Is a Nucleoid-Associated Protein. PLoS Pathogens, 2012, 8, e1002621.	4.7	115
9	Streptomycin-Starved Mycobacterium tuberculosis 18b, a Drug Discovery Tool for Latent Tuberculosis. Antimicrobial Agents and Chemotherapy, 2012, 56, 5782-5789.	3.2	88
10	Anticytolytic Screen Identifies Inhibitors of Mycobacterial Virulence Protein Secretion. Cell Host and Microbe, 2014, 16, 538-548.	11.0	83
11	The Inosine Monophosphate Dehydrogenase, GuaB2, Is a Vulnerable New Bactericidal Drug Target for Tuberculosis. ACS Infectious Diseases, 2017, 3, 5-17.	3.8	83
12	<scp>E</scp> sp <scp>C</scp> forms a filamentous structure in the cell envelope of <scp><i>M</i></scp> <i>ycobacterium tuberculosis</i> and impacts <scp>ESX</scp> â€I secretion. Molecular Microbiology, 2017, 103, 26-38.	2.5	77
13	Assessing the essentiality of the decaprenylâ€phosphoâ€ <scp>d</scp> â€arabinofuranose pathway in <scp><i>M</i></scp> <i>ycobacterium tuberculosis</i> using conditional mutants. Molecular Microbiology, 2014, 92, 194-211.	2.5	76
14	Development of a repressible mycobacterial promoter system based on two transcriptional repressors. Nucleic Acids Research, 2010, 38, e134-e134.	14.5	74
15	Transcriptional Regulation of furA and katG upon Oxidative Stress in Mycobacterium smegmatis. Journal of Bacteriology, 2001, 183, 6801-6806.	2.2	67
16	Mycobacterium tuberculosis FurA Autoregulates Its Own Expression. Journal of Bacteriology, 2003, 185, 5357-5362.	2.2	61
17	Genomeâ€wide regulon and crystal structure of Blal (Rv1846c) from <i>Mycobacterium tuberculosis</i> . Molecular Microbiology, 2009, 71, 1102-1116.	2.5	61
18	Transcription facilitated genome-wide recruitment of topoisomerase I and DNA gyrase. PLoS Genetics, 2017, 13, e1006754.	3.5	56

CLAUDIA SALA

#	Article	IF	CITATIONS
19	In VitroandIn VivoActivities of Three Oxazolidinones against Nonreplicating Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2014, 58, 3217-3223.	3.2	53
20	Genome-Wide Definition of the SigF Regulon in Mycobacterium tuberculosis. Journal of Bacteriology, 2012, 194, 2001-2009.	2.2	46
21	High-resolution detection of DNA binding sites of the global transcriptional regulator GlxR in Corynebacterium glutamicum. Microbiology (United Kingdom), 2013, 159, 12-22.	1.8	44
22	High-resolution transcriptome and genome-wide dynamics of RNA polymerase and NusA in Mycobacterium tuberculosis. Nucleic Acids Research, 2013, 41, 961-977.	14.5	41
23	The Phosphatidyl- <i>myo</i> -Inositol Mannosyltransferase PimA Is Essential for Mycobacterium tuberculosis Growth <i>In Vitro</i> and <i>In Vivo</i> . Journal of Bacteriology, 2014, 196, 3441-3451.	2.2	37
24	Tuberculosis drugs: new candidates and how to find more. Future Microbiology, 2011, 6, 617-633.	2.0	36
25	Characterization of DprE1-Mediated Benzothiazinone Resistance in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2016, 60, 6451-6459.	3.2	36
26	EspL is essential for virulence and stabilizes EspE, EspF and EspH levels in Mycobacterium tuberculosis. PLoS Pathogens, 2018, 14, e1007491.	4.7	33
27	Bioluminescence for Assessing Drug Potency against Nonreplicating Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2015, 59, 4012-4019.	3.2	30
28	<scp>EspI</scp> regulates the <scp>ESX</scp> â€1 secretion system in response to <scp>ATP</scp> levels in <scp><i>M</i></scp> <i>ycobacterium tuberculosis</i> . Molecular Microbiology, 2014, 93, 1057-1065.	2.5	27
29	GtrA Protein Rv3789 Is Required for Arabinosylation of Arabinogalactan in Mycobacterium tuberculosis. Journal of Bacteriology, 2015, 197, 3686-3697.	2.2	26
30	The katG mRNA of Mycobacterium tuberculosis and Mycobacterium smegmatis is processed at its 5' end and is stabilized by both a polypurine sequence and translation initiation. BMC Molecular Biology, 2008, 9, 33.	3.0	22
31	Essential Nucleoid Associated Protein mIHF (Rv1388) Controls Virulence and Housekeeping Genes in Mycobacterium tuberculosis. Scientific Reports, 2018, 8, 14214.	3.3	19
32	Genomic and transcriptomic analysis of the streptomycin-dependent Mycobacterium tuberculosis strain 18b. BMC Genomics, 2016, 17, 190.	2.8	18
33	Whole-Genome Sequencing for Comparative Genomics and De Novo Genome Assembly. Methods in Molecular Biology, 2015, 1285, 1-16.	0.9	15
34	Dissecting Regulatory Networks in Host-Pathogen Interaction Using ChIP-on-chip Technology. Cell Host and Microbe, 2009, 5, 430-437.	11.0	14
35	Sigma Factor F Does Not Prevent Rifampin Inhibition of RNA Polymerase or Cause Rifampin Tolerance in <i>Mycobacterium tuberculosis</i> . Journal of Bacteriology, 2010, 192, 5472-5479.	2.2	14
36	Promoter mutagenesis for fineâ€ŧuning expression of essential genes in <i>Mycobacterium tuberculosis</i> . Microbial Biotechnology, 2018, 11, 238-247.	4.2	13

CLAUDIA SALA

#	Article	IF	CITATIONS
37	Mycobacterium ulcerans Mouse Model Refinement for Pre-Clinical Profiling of Vaccine Candidates. PLoS ONE, 2016, 11, e0167059.	2.5	12
38	Vaccines as remedy for antimicrobial resistance and emerging infections. Current Opinion in Immunology, 2020, 65, 102-106.	5.5	11
39	Multicenter analysis of sputum microbiota in tuberculosis patients. PLoS ONE, 2020, 15, e0240250.	2.5	10
40	Rv3852 (H-NS) of Mycobacterium tuberculosis Is Not Involved in Nucleoid Compaction and Virulence Regulation. Journal of Bacteriology, 2017, 199, .	2.2	9
41	Antibodies, epicenter of SARS-CoV-2 immunology. Cell Death and Differentiation, 2021, 28, 821-824.	11.2	9
42	Assessing essentiality of transketolase in <i>Mycobacterium tuberculosis</i> using an inducible protein degradation system. FEMS Microbiology Letters, 2014, 358, 30-35.	1.8	8
43	Polarly Localized EccE ₁ Is Required for ESX-1 Function and Stabilization of ESX-1 Membrane Proteins in Mycobacterium tuberculosis. Journal of Bacteriology, 2020, 202, .	2.2	7
44	Host-Directed Therapies and Anti-Virulence Compounds to Address Anti-Microbial Resistant Tuberculosis Infection. Applied Sciences (Switzerland), 2020, 10, 2688.	2.5	6
45	DNA replication in phage P4: Characterization of replicon II. Plasmid, 2006, 56, 216-222.	1.4	2
46	FasR Regulates Fatty Acid Biosynthesis and Is Essential for Virulence of Mycobacterium tuberculosis. Frontiers in Microbiology, 2020, 11, 586285.	3.5	1
47	Bacteriophage P4 sut1: a mutation suppressing transcription termination. Journal of General Virology, 2007, 88, 1041-1047.	2.9	0
48	Editorial on Special Issue "Tuberculosis Drug Discovery and Development 2019― Applied Sciences (Switzerland), 2020, 10, 6069.	2.5	0