Breck A Duerkop

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9111079/publications.pdf

Version: 2024-02-01

39 papers

3,178 citations

236925 25 h-index 289244 40 g-index

59 all docs

59 docs citations

59 times ranked

4525 citing authors

#	Article	IF	CITATIONS
1	Evaluation of Bacteriophage Cocktails Alone and in Combination with Daptomycin against Daptomycin-Nonsusceptible Enterococcus faecium. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0162321.	3.2	8
2	Evaluation of Bacteriophage-Antibiotic Combination Therapy for Biofilm-Embedded MDR Enterococcus faecium. Antibiotics, 2022, 11, 392.	3.7	8
3	Genetically distant bacteriophages select for unique genomic changes in <i>Enterococcus faecalis</i> . MicrobiologyOpen, 2022, 11, e1273.	3.0	2
4	Complete Genome Sequence of Neonatal Clinical Group B Streptococcal Isolate CJB111. Microbiology Resource Announcements, 2021, 10, .	0.6	10
5	Lytic Bacteriophages Facilitate Antibiotic Sensitization of Enterococcus faecium. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	30
6	Individuals at risk for rheumatoid arthritis harbor differential intestinal bacteriophage communities with distinct metabolic potential. Cell Host and Microbe, 2021, 29, 726-739.e5.	11.0	52
7	CRISPR-based antimicrobials to obstruct antibiotic-resistant and pathogenic bacteria. PLoS Pathogens, 2021, 17, e1009672.	4.7	24
8	Let Me Upgrade You: Impact of Mobile Genetic Elements on Enterococcal Adaptation and Evolution. Journal of Bacteriology, 2021, 203, e0017721.	2.2	10
9	Bacteriophage-Bacteria Interactions in the Gut: From Invertebrates to Mammals. Annual Review of Virology, 2021, 8, 95-113.	6.7	17
10	Phage infection and sub-lethal antibiotic exposure mediate Enterococcus faecalis type VII secretion system dependent inhibition of bystander bacteria. PLoS Genetics, 2021, 17, e1009204.	3. 5	45
11	Transductomics: sequencing-based detection and analysis of transduced DNA in pure cultures and microbial communities. Microbiome, 2020, 8, 158.	11.1	29
12	Genome-Wide Mutagenesis Identifies Factors Involved in Enterococcus faecalis Vaginal Adherence and Persistence. Infection and Immunity, 2020, 88, .	2.2	16
13	Bacteriophage-Antibiotic Combinations for Enterococcus faecium with Varying Bacteriophage and Daptomycin Susceptibilities. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	28
14	Parallel Genomics Uncover Novel Enterococcal-Bacteriophage Interactions. MBio, 2020, 11, .	4.1	57
15	Molecular mechanisms of enterococcal-bacteriophage interactions and implications for human health. Current Opinion in Microbiology, 2020, 56, 38-44.	5.1	12
16	Fitness Trade-Offs Resulting from Bacteriophage Resistance Potentiate Synergistic Antibacterial Strategies. Infection and Immunity, 2020, 88, .	2.2	111
17	Enterococcus faecalis CRISPR-Cas Is a Robust Barrier to Conjugative Antibiotic Resistance Dissemination in the Murine Intestine. MSphere, 2019, 4, .	2.9	46
18	Conjugative Delivery of CRISPR-Cas9 for the Selective Depletion of Antibiotic-Resistant Enterococci. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	76

#	Article	IF	CITATIONS
19	Bacteriophage Resistance Alters Antibiotic-Mediated Intestinal Expansion of Enterococci. Infection and Immunity, 2019, 87, .	2.2	79
20	Sugar and Fatty Acids Ack-celerate Prophage Induction. Cell Host and Microbe, 2019, 25, 175-176.	11.0	9
21	Dyeing to connect. Nature Microbiology, 2019, 4, 2033-2034.	13.3	2
22	Precision editing of the gut microbiota ameliorates colitis. Nature, 2018, 553, 208-211.	27.8	377
23	Bacteriophages shift the focus of the mammalian microbiota. PLoS Pathogens, 2018, 14, e1007310.	4.7	35
24	Murine colitis reveals a disease-associated bacteriophage community. Nature Microbiology, 2018, 3, 1023-1031.	13.3	132
25	Beyond Bacteria: Bacteriophage-Eukaryotic Host Interactions Reveal Emerging Paradigms of Health and Disease. Frontiers in Microbiology, 2018, 9, 1394.	3.5	39
26	Microbial Respiration and Formate Oxidation as Metabolic Signatures of Inflammation-Associated Dysbiosis. Cell Host and Microbe, 2017, 21, 208-219.	11.0	239
27	Molecular Basis for Lytic Bacteriophage Resistance in Enterococci. MBio, 2016, 7, .	4.1	80
28	Evaluation of methods to purify virus-like particles for metagenomic sequencing of intestinal viromes. BMC Genomics, $2015, 16, 7$.	2.8	183
29	Resident viruses and their interactions with the immune system. Nature Immunology, 2013, 14, 654-659.	14.5	247
30	AHL Signals Induce Rubrifacine Production in a brul Mutant of Brenneria rubrifaciens. Phytopathology, 2012, 102, 195-203.	2.2	1
31	A composite bacteriophage alters colonization by an intestinal commensal bacterium. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17621-17626.	7.1	198
32	Quorum-Sensing-Regulated Bactobolin Production by <i>Burkholderia thailandensis</i> E264. Organic Letters, 2010, 12, 716-719.	4.6	114
33	Mutational Analysis of <i>Burkholderia thailandensis </i> Quorum Sensing and Self-Aggregation. Journal of Bacteriology, 2009, 191, 5901-5909.	2.2	88
34	Quorum-Sensing Control of Antibiotic Synthesis in <i>Burkholderia thailandensis</i> li>. Journal of Bacteriology, 2009, 191, 3909-3918.	2.2	129
35	Immune Responses to the Microbiota at the Intestinal Mucosal Surface. Immunity, 2009, 31, 368-376.	14.3	369
36	The <i>Burkholderia mallei</i> BmaR3-BmaI3 Quorum-Sensing System Produces and Responds to <i>N</i> -3-Hydroxy-Octanoyl Homoserine Lactone. Journal of Bacteriology, 2008, 190, 5137-5141.	2.2	38

3

#	Article	IF	CITATIONS
37	Octanoyl-Homoserine Lactone Is the Cognate Signal for Burkholderia mallei BmaR1-BmaI1 Quorum Sensing. Journal of Bacteriology, 2007, 189, 5034-5040.	2.2	49
38	Oxidant Generation by Single Infected Monocytes after Short-Term Fluorescence Labeling of a Protozoan Parasite. Infection and Immunity, 2007, 75, 1017-1024.	2.2	38
39	A structurally unrelated mimic of a Pseudomonas aeruginosa acyl-homoserine lactone quorum-sensing signal. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16948-16952.	7.1	125