
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/911070/publications.pdf Version: 2024-02-01

Τλέεςμι Ενίδο

#	Article	lF	CITATIONS
1	Synthesis and copolymerization of fully bio-based benzoxazines from guaiacol, furfurylamine and stearylamine. Green Chemistry, 2012, 14, 2799.	9.0	256
2	Carbon dioxide and carbon disulfide as resources for functional polymers. Progress in Polymer Science, 2005, 30, 183-215.	24.7	215
3	Model reaction for the synthesis of polyhydroxyurethanes from cyclic carbonates with amines: Substituent effect on the reactivity and selectivity of ring-opening direction in the reaction of five-membered cyclic carbonates with amine. Journal of Polymer Science Part A, 2001, 39, 3678-3685.	2.3	183
4	Star Polymer Synthesis from Îμ-Caprolactone Utilizing Polyol/Protonic Acid Initiator. Macromolecules, 2002, 35, 680-683.	4.8	175
5	Selective Formation of Poly(<i>N</i> , <i>O</i> -acetal) by Polymerization of 1,3-Benzoxazine and Its Main Chain Rearrangement. Macromolecules, 2008, 41, 9030-9034.	4.8	162
6	Polyaddition behavior of bis(five- and six-membered cyclic carbonate)s with diamine. Journal of Polymer Science Part A, 2001, 39, 860-867.	2.3	150
7	Structural analysis of polyhydroxyurethane obtained by polyaddition of bifunctional five-membered cyclic carbonate and diamine based on the model reaction. Journal of Polymer Science Part A, 2001, 39, 851-859.	2.3	140
8	A Highly Reactive Benzoxazine Monomer, 1-(2-Hydroxyethyl)-1,3-Benzoxazine: Activation of Benzoxazine by Neighboring Group Participation of Hydroxyl Group. Macromolecules, 2010, 43, 1185-1187.	4.8	139
9	Reactivity comparison of five- and six-membered cyclic carbonates with amines: Basic evaluation for synthesis of poly(hydroxyurethane). Journal of Polymer Science Part A, 2001, 39, 162-168.	2.3	135
10	A curing system of benzoxazine with amine: reactivity, reaction mechanism and material properties. RSC Advances, 2015, 5, 19048-19057.	3.6	130
11	Cationic Ring-Opening Polymerization of Cyclic Carbonates with Alkyl Halides To Yield Polycarbonate without the Ether Unit by Suppression of Elimination of Carbon Dioxide. Macromolecules, 1997, 30, 737-744.	4.8	121
12	Radical ring-opening polymerization. Journal of Polymer Science Part A, 2001, 39, 265-276.	2.3	115
13	Addition of five-membered cyclic carbonate with amine and its application to polymer synthesis. Journal of Polymer Science Part A, 2000, 38, 2375-2380.	2.3	107
14	One-pot non-isocyanate synthesis of polyurethanes from bisepoxide, carbon dioxide, and diamine. Journal of Polymer Science Part A, 2005, 43, 6613-6618.	2.3	107
15	Preparation of 1,3-Oxathiolane-2-thiones by the Reaction of Oxirane and Carbon Disulfide. Journal of Organic Chemistry, 1995, 60, 473-475.	3.2	106
16	Polyaddition of bis(seven-membered cyclic carbonate) with diamines: A novel and efficient synthetic method for polyhydroxyurethanes. Journal of Polymer Science Part A, 2001, 39, 4091-4100.	2.3	105
17	Highly efficient catalystsâ€acetylacetonato complexes of transition metals in the 4th period for ringâ€opening polymerization of 1,3â€benzoxazine. Journal of Polymer Science Part A, 2010, 48, 479-484.	2.3	102
18	Synthesis and crosslinking behavior of a novel linear polymer bearing 1,2,3â€ŧriazol and benzoxazine groups in the main chain by a stepâ€growth clickâ€coupling reaction. Journal of Polymer Science Part A, 2008, 46, 2316-2325.	2.3	100

#	Article	IF	CITATIONS
19	Toward Elucidating the Role of Number of Oxazine Rings and Intermediates in the Benzoxazine Backbone on Their Thermal Characteristics. Macromolecules, 2016, 49, 8466-8478.	4.8	98
20	Optically active poly(hydroxyurethane)s derived from cyclic carbonate andL-lysine derivatives. Journal of Polymer Science Part A, 1996, 34, 2173-2179.	2.3	97
21	Reaction of Various Oxiranes and Carbon Dioxide. Synthesis and Aminolysis of Five-Membered Cyclic Carbonates. Bulletin of the Chemical Society of Japan, 2000, 73, 713-719.	3.2	97
22	A Novel Construction of a Reversible Fixationâ^'Release System of Carbon Dioxide by Amidines and Their Polymers. Macromolecules, 2004, 37, 2007-2009.	4.8	95
23	Reversible Trapâ^`Release of CO ₂ by Polymers Bearing DBU and DBN Moieties. Macromolecules, 2008, 41, 1229-1236.	4.8	93
24	Feedstock Recycling of Flame-Resisting Poly(lactic acid)/Aluminum Hydroxide Composite tol,l-lactide. Industrial & Engineering Chemistry Research, 2005, 44, 1433-1437.	3.7	91
25	Polypeptide Functional Surface for the Aptamer Immobilization: Electrochemical Cocaine Biosensing. Analytical Chemistry, 2016, 88, 4161-4167.	6.5	91
26	Thermoinitiated cationic polymerization of epoxy resins by sulfonium salts. Journal of Applied Polymer Science, 1986, 32, 5727-5732.	2.6	88
27	Controlled Synthesis of Poly(N-ethyl-3-vinylcarbazole) and Block Copolymers via RAFT Polymerization. Macromolecules, 2005, 38, 8192-8201.	4.8	88
28	Synthesis and thermal properties of a bioâ€based polybenzoxazine with curing promoter. Journal of Polymer Science Part A, 2013, 51, 2016-2023.	2.3	88
29	RAFT Polymerization of Acrylamide Derivatives Containingl-Phenylalanine Moiety. Macromolecules, 2006, 39, 4351-4360.	4.8	87
30	Synthesis of Ion Conductive Networked Polymers Based on an Ionic Liquid Epoxide Having a Quaternary Ammonium Salt Structure. Macromolecules, 2009, 42, 4580-4584.	4.8	87
31	Substituent effects of <i>N</i> â€elkyl groups on thermally induced polymerization behavior of 1,3â€benzoxazines. Journal of Polymer Science Part A, 2010, 48, 2777-2782.	2.3	87
32	Xanthate-Mediated Controlled Radical Polymerization ofN-Vinylcarbazole. Macromolecular Chemistry and Physics, 2006, 207, 1005-1017.	2.2	84
33	A Novel Living Coordination Polymerization of Phenylallene Derivatives by π-Allylnickel Catalyst. Macromolecules, 1997, 30, 7386-7390.	4.8	82
34	Amidine-mediated delivery of CO ₂ from gas phase to reaction system for highly efficient synthesis of cyclic carbonates from epoxides. Green Chemistry, 2010, 12, 42-44.	9.0	80
35	Incorporation of carbon dioxide into poly(glycidyl methacrylate). Macromolecules, 1992, 25, 4824-4825.	4.8	77
36	Proline-Based Block Copolymers Displaying Upper and Lower Critical Solution Temperatures. Macromolecules, 2010, 43, 1289-1298.	4.8	77

#	Article	IF	CITATIONS
37	Nucleophilic polyaddition in water based on chemo-selective reaction of cyclic carbonate with amine. Green Chemistry, 2005, 7, 765.	9.0	76
38	Synthesis and reaction of polymethacrylate bearing cyclic carbonate moieties in the side chain. Die Makromolekulare Chemie, 1992, 193, 1481-1492.	1.1	75
39	Effective synthesis of cyclic carbonates from carbon dioxide and epoxides by phosphonium iodides as catalysts in alcoholic solvents. Tetrahedron Letters, 2013, 54, 7031-7034.	1.4	73
40	Development and application of novel ringâ€opening polymerizations to functional networked polymers. Journal of Polymer Science Part A, 2009, 47, 4847-4858.	2.3	72
41	Convenient synthesis of cyclic carbonates from CO ₂ and epoxides by simple secondary and primary ammonium iodides as metalâ€free catalysts under mild conditions and its application to synthesis of polymer bearing cyclic carbonate moiety. Journal of Polymer Science Part A, 2013, 51, 1230-1242.	2.3	71
42	Silver-based, single-sided antibacterial cotton fabrics with improved durability via an l-cysteine binding effect. Cellulose, 2018, 25, 2129-2141.	4.9	71
43	Controlled ring-opening polymerization of cyclic carbonates and lactones by an activated monomer mechanism. Journal of Polymer Science Part A, 2002, 40, 2190-2198.	2.3	68
44	Salt effect on polyaddition of bifunctional cyclic carbonate and diamine. Journal of Polymer Science Part A, 2005, 43, 6282-6286.	2.3	68
45	Radical polymerization behavior of 1,1-disubstituted 2-vinylcyclopropanes. Macromolecules, 1993, 26, 1818-1824.	4.8	66
46	Synthesis of Rare-metal Absorbing Polymer by Three-component Polyaddition through Combination of Chemo-selective Nucleophilic and Radical Additions. Journal of the American Chemical Society, 2009, 131, 1636-1637.	13.7	64
47	Amphiphilic Copolymer Having Acid-Labile Acetal in the Side Chain as a Hydrophobe: Controlled Release of Aldehyde by Thermoresponsive Aggregationâ^'Dissociation of Polymer Micelles. Macromolecules, 2009, 42, 2229-2235.	4.8	63
48	Control of racemization for feedstock recycling of PLLA. Green Chemistry, 2003, 5, 575-579.	9.0	62
49	Anionic Ring-Opening Polymerization of Methyl 4,6-O-Benzylidene-2,3-O- carbonyl-α-d-glucopyranoside: A First Example of Anionic Ring-Opening Polymerization of Five-Membered Cyclic Carbonate without Elimination of CO2. Macromolecules, 2005, 38, 3562-3563.	4.8	62
50	Reworkable Polyhydroxyurethane Films with Reversible Acetal Networks Obtained from Multifunctional Six-Membered Cyclic Carbonates. Journal of the American Chemical Society, 2018, 140, 884-887.	13.7	62
51	Design of latent catalysts and their application to polymer synthesis. Macromolecular Symposia, 1996, 107, 237-242.	0.7	61
52	Synthesis and Chemical Recycling of a Polycarbonate Obtained by Anionic Ring-Opening Polymerization of a Bifunctional Cyclic Carbonate. Macromolecules, 2005, 38, 8177-8182.	4.8	61
53	Ring-Opening Polymerization with Expansion in Volume. ACS Symposium Series, 1977, , 38-59.	0.5	57
54	Cyclic carbonates, novel expandable monomers on polymerization. Macromolecular Rapid Communications, 1997, 18, 461-469.	3.9	57

#	Article	IF	CITATIONS
55	Polymerization–Depolymerization System Based on Reversible Addition-Dissociation Reaction of 1,3-Benzoxazine with Thiol. ACS Macro Letters, 2013, 2, 1-4.	4.8	57
56	Acceleration effect of <i>N</i> â€allyl group on thermally induced ringâ€opening polymerization of 1,3â€benzoxazine. Journal of Polymer Science Part A, 2010, 48, 5357-5363.	2.3	55
57	Novel benzyl sulfonium salt having an aromatic group on sulfur atom as a latent thermal initiator. Journal of Polymer Science Part A, 1991, 29, 1675-1680.	2.3	54
58	Controlled RAFT Polymerization of <i>N</i> â€Vinylphthalimide and its Hydrazinolysis to Poly(vinyl) Tj ETQq0 0 0	rgBT /Ovei 2.2	rlock 10 Tf 50
59	Synthesis of 1 <i>H</i> â€quinazolineâ€2,4â€diones from 2â€aminobenzonitriles by fixation of carbon dioxide with amidine moiety supported polymer at atmospheric pressure. Journal of Polymer Science Part A, 2009, 47, 653-657.	2.3	54
60	Dual-Stimuli-Responsive Block Copolymers Derived from Proline Derivatives. Macromolecules, 2009, 42, 4985-4992.	4.8	54
61	Synthesis of networked polymers by copolymerization of monoepoxyâ€substituted lithium sulfonylimide and diepoxyâ€substituted poly(ethylene glycol), and their properties. Journal of Polymer Science Part A, 2011, 49, 1874-1880.	2.3	53
62	Synthesis of polybenzoxazine/clay nanocomposites by <i>in situ</i> thermal ringâ€opening polymerization using intercalated monomer. Journal of Polymer Science Part A, 2011, 49, 4213-4220.	2.3	53
63	Synthesis and characterization of conducting polymers containing polypeptide and ferrocene side chains as ethanol biosensors. Polymer Chemistry, 2014, 5, 6295-6306.	3.9	52
	Anionic ringâ€onening polymerization of a fiveâ€membered cyclic carbonate having a gluconyranoside		

64	Anionic ringâ€opening polymerization of a fiveâ€membered cyclic carbonate having a glucopyranoside structure. Journal of Polymer Science Part A, 2013, 51, 1651-1655.	2.3	51
65	Controlled monomer insertion into polymer main chain: synthesis of sequence ordered polystyrene containing thiourethane and trithiocarbonate units by the RAFT processElectronic supplementary information (ESI) available: 1H and 13C-NMR spectra of polymer precursor 4 and polymer 5. See http://www.rsc.org/suppdata/cc/b2/b205523f/. Chemical Communications, 2002, , 1946-1947.	4.1	48
66	Synthesis and properties of polyhydroxyurethane bearing silicone backbone. Journal of Polymer Science Part A, 2014, 52, 1113-1118.	2.3	48
67	Synthesis and properties of fluorene-based fluorinated polymers. Journal of Polymer Science Part A, 2001, 39, 3143-3150.	2.3	47
68	Fabrication of asymmetrically superhydrophobic cotton fabrics via mist copolymerization of 2,2,2â€ŧrifluoroethyl methacrylate. Journal of Polymer Science Part A, 2015, 53, 1862-1871.	2.3	47
69	Synthesis and Properties of Spiro-Centered Benzoxazines. Macromolecules, 2015, 48, 7466-7472.	4.8	47
70	Polymer Reaction of Epoxide and Carbon Dioxide. Incorporation of Carbon Dioxide into Epoxide Polymers. Macromolecules, 1995, 28, 4701-4706.	4.8	46
71	Polypeptide with electroactive endgroups as sensing platform for the abused drug â€~methamphetamine' by bioelectrochemical method. Talanta, 2016, 161, 789-796.	5.5	46

⁷²Electrochemical deposition of polypeptides: bio-based covering materials for surface design. Polymer
Chemistry, 2014, 5, 3929-3936.3.945

#	Article	IF	CITATIONS
73	A Novel Synthetic Approach to Networked Polymers without Volume Shrinkage on Cross-Linking Polymerization:Â Cationic Copolymerization of a Monofunctional Epoxide and a Spiro Orthocarbonate Bearing Norbornene Backbone. Macromolecules, 2003, 36, 5902-5904.	4.8	44
74	Functional RAFT agents for radicalâ€controlled polymerization: Quantitative synthesis of trithiocarbonates containing functional groups as RAFT agents using equivalent amount of CS ₂ . Journal of Polymer Science Part A, 2009, 47, 3702-3709.	2.3	44
75	Ringâ€opening polymerization of 1,3â€benzoxazines by <i>p</i> â€toluenesulfonates as thermally latent initiators. Journal of Polymer Science Part A, 2011, 49, 3631-3636.	2.3	44
76	Revolutionary phosgeneâ€free synthesis of αâ€amino acid <i>N</i> â€carboxyanhydrides using diphenyl carbonate based on activation of αâ€amino acids by converting into imidazolium salts. Journal of Polymer Science Part A, 2010, 48, 4351-4355.	2.3	43
77	Hyperbranched Triphenylamine Polymer for UltraFast Battery Cathode. ACS Applied Materials & Interfaces, 2018, 10, 6346-6353.	8.0	43
78	Living Coordination Polymerization ofN-Allenylamides by π-Allylnickel Catalysts. Macromolecules, 1998, 31, 6741-6747.	4.8	41
79	Physically Controlled Radical Polymerization of Vaporized Vinyl Monomers on Surfaces. Synthesis of Block Copolymers of Methyl Methacrylate and Styrene with a Conventional Free Radical Initiator. Macromolecules, 2003, 36, 5974-5981.	4.8	40
80	Six-Membered Cyclic Carbonate Having Styrene Moiety as a Chemically Recyclable Monomer. Construction of Novel Cross-Linkingâ^ De-Cross-Linking System of Network Polymers. Macromolecules, 2005, 38, 7944-7949.	4.8	40
81	Synthesis and Thermal Properties of Difunctional Benzoxazines with Attached Oxazine Ring at the <i>Para</i> -, <i>Meta</i> -, and <i>Ortho</i> -Position. Macromolecules, 2017, 50, 3476-3488.	4.8	40
82	Anionic Ring-Opening Polymerization of Î μ -Thionocaprolactone. Macromolecules, 1999, 32, 8010-8014.	4.8	39
83	Reversible Photo-Mechanical Switching Behavior of Azobenzene-Containing Semi-Interpenetrating Network under UV and Visible Light Irradiation. Macromolecular Chemistry and Physics, 2005, 206, 2106-2111.	2.2	39
84	Phosgeneâ€free synthesis of <i>N</i> â€carboxyanhydrides of αâ€amino acids based on bisarylcarbonates as starting compounds. Journal of Polymer Science Part A, 2007, 45, 5365-5370.	2.3	39
85	Preparation of pH-sensitive hydrogel microspheres of poly(acrylamide-co-methacrylic acid) with sharp pH–volume transition. Colloid and Polymer Science, 2007, 285, 819-826.	2.1	39
86	Deterioration behavior of cellulose acetate films in acidic or basic aqueous solutions. Journal of Applied Polymer Science, 2004, 91, 3354-3361.	2.6	37
87	Structures and Chiroptical Properties of Thermoresponsive Block Copolymers Containing <scp>L</scp> â€Proline Moieties. Macromolecular Chemistry and Physics, 2007, 208, 1908-1918.	2.2	37
88	Useful synthetic method of polypeptides with wellâ€defined structure by polymerization of activated urethane derivatives of αâ€amino acids. Journal of Polymer Science Part A, 2012, 50, 2527-2532.	2.3	37
89	Phosgeneâ€free synthesis of polypeptides: Useful synthesis for hydrophobic polypeptides through polycondensation of activated urethane derivatives of αâ€amino acids. Journal of Polymer Science Part A, 2013, 51, 3726-3731.	2.3	37
90	Free radical ringâ€opening polymerization and its use to make biodegradable polymers and functionally terminated oligomers. Makromolekulare Chemie Macromolecular Symposia, 1986, 6, 81-100.	0.6	36

#	Article	IF	CITATIONS
91	Controlled Cationic Ring-Opening Polymerization of 1,3-Oxazolidine-2-thione Derived froml-Serine. Macromolecules, 2003, 36, 9335-9339.	4.8	36
92	Synthesis of novel triâ€benzoxazine and effect of phenolic nucleophiles on its ringâ€opening polymerization. Journal of Polymer Science Part A, 2016, 54, 2811-2819.	2.3	36
93	Synthesis and crosslinking reaction of poly(hydroxyurethane) bearing a secondary amine structure in the main chain. Journal of Polymer Science Part A, 2005, 43, 5899-5905.	2.3	35
94	Preparation of Amphoteric Microgels of Poly(acrylamide/methacrylic acid/dimethylamino ethylene) Tj ETQq0 0 0	rgBT/Ove 4.8	rlogg 10 Tf 5(
95	Synthesis and properties of polyurethanes bearing urethane moieties in the side chain. Journal of Polymer Science Part A, 2007, 45, 3408-3414.	2.3	35
96	Methacrylate-based ionic liquid: radical polymerization/copolymerization with methyl methacrylate and evaluation of molecular weight of the obtained homopolymers. Polymer Bulletin, 2011, 66, 199-210.	3.3	35
97	Remarkably Efficient Catalysts of Amidine Hydroiodides for the Synthesis of Cyclic Carbonates from Carbon Dioxide and Epoxides under Mild Conditions. Chemistry Letters, 2012, 41, 240-241.	1.3	35
98	Facile synthesis and crosslinking reaction of trifunctional five-membered cyclic carbonate and dithiocarbonate. Journal of Polymer Science Part A, 2004, 42, 5983-5989.	2.3	34
99	Synthesis of networked polymer based on ringâ€opening addition reaction of 1,3â€benzoxazine with resorcinol. Journal of Polymer Science Part A, 2012, 50, 4756-4761.	2.3	34
100	Anionic Alternating Copolymerizability of Epoxide and 3,4-Dihydrocoumarin by Imidazole. Macromolecules, 2007, 40, 6535-6539.	4.8	33
101	Photomechanical Switching Behavior of Semi-Interpenetrating Polymer Network Consisting of Azobenzene-Carrying Crosslinked Poly(vinyl ether) and Polycarbonate. Macromolecular Rapid Communications, 2005, 26, 1032-1036.	3.9	32
102	Synthesis and Properties of Polycarbosilanes Having 5-Membered Cyclic Carbonate Groups as Solid Polymer Electrolytes. Macromolecules, 2016, 49, 9441-9448.	4.8	32
103	Controlled Radical Polymerization of Vaporized Vinyl Monomers on Solid Surfaces under UV Irradiation. Macromolecular Chemistry and Physics, 2004, 205, 492-499.	2.2	31
104	Synthesis of Star Polymers Based on Xanthate-Mediated Controlled Radical Polymerization of N-Vinylcarbazole. Macromolecular Symposia, 2007, 249-250, 406-411.	0.7	31
105	Polymerâ€supported pyridinium catalysts for synthesis of cyclic carbonate by reaction of carbon dioxide and oxirane. Journal of Polymer Science Part A, 2007, 45, 5673-5678.	2.3	31
106	Preparation and properties of ionicâ€liquidâ€containing poly(ethylene glycol)â€based networked polymer films having lithium salt structures. Journal of Polymer Science Part A, 2011, 49, 3582-3587.	2.3	31
107	Synthesis and polymerization of .gammatrichloroethyl-L-glutamate N-carboxyanhydride: a polypeptide that can be functionalized with a nucleophilic agent. Journal of the American Chemical Society, 1988, 110, 2016-2017.	13.7	30
	Radical Ring-Opening Polymerization of Novel Vinylcyclopropanes Designed as Low Shrinkage		

Radical Ring-Opening Polymerization of Novel Vinylcyclopropanes Designed as Low Shrinkage108Monomers. Structure of the Polymer, Mechanism of the Polymerization, and Volume Change on the4.830Polymerization. Macromolecules, 1995, 28, 1346-1355.

#	Article	IF	CITATIONS
109	Synthesis of polypeptides from activated urethane derivatives of αâ€amino acids. Journal of Polymer Science Part A, 2008, 46, 2525-2535.	2.3	30
110	Synthesis of Eight-Membered Lactone Having Tertiary Amine Moiety by Ring-Expansion Reaction of 1,3-Benzoxazine and Its Anionic Ring-Opening Polymerization Behavior. Macromolecules, 2009, 42, 2327-2329.	4.8	30
111	Synthesis of amphiphilic polyacetal by polycondensation of aldehyde and polyethylene glycol as an acid″abile polymer for controlled release of aldehyde. Journal of Polymer Science Part A, 2011, 49, 596-602.	2.3	30
112	Synthesis of polymers bearing 1,3â€benzoxazine moiety in the side chains from poly(allylamine) and their crosslinking behaviors. Journal of Polymer Science Part A, 2011, 49, 3174-3183.	2.3	30
113	Synthesis and Characterization of Hyperbranched Poly(?-ketoester) by the Michael Addition. Macromolecular Materials and Engineering, 2004, 289, 923-926.	3.6	29
114	Assembled Structures and Chiroptical Properties of Amphiphilic Block Copolymers Synthesized by RAFT Polymerization of <i>N</i> â€Acryloylâ€ <scp>L</scp> â€alanine. Macromolecular Chemistry and Physics, 2008, 209, 2100-2112.	2.2	29
115	Accelerating effects of <i>N</i> â€arylâ€ <i>N</i> ′, <i>N</i> ′â€dialkyl ureas on epoxyâ€dicyandiamide curing system. Journal of Polymer Science Part A, 2010, 48, 5298-5305.	2.3	29
116	Conductive networked polymer gel electrolytes composed of poly(meth)acrylate, lithium salt, and ionic liquid. Journal of Polymer Science Part A, 2012, 50, 1317-1324.	2.3	29
117	Syntheses of 2-phenyl-3-vinyloxirane derivatives that undergo radical ring-opening polymerization. Journal of Polymer Science: Polymer Chemistry Edition, 1985, 23, 1931-1938.	0.8	28
118	Cationic polymerization with p-substituted benzyl p-hydroxyphenyl methyl sulfonium salts: Effect of substituents and mechanistic aspects of initiation reaction. Journal of Polymer Science Part A, 1993, 31, 1023-1028.	2.3	28
119	Reversible crosslinking-decrosslinking of polymers having bicyclo orthoester moieties in the side chains. Macromolecular Chemistry and Physics, 1999, 200, 1268-1273.	2.2	28
120	Cationic Ring-Opening Polymerization of Five-Membered Cyclic Thiocarbonate Bearing an Adamantane Moiety via Selective Ring-Opening Direction. Macromolecules, 2002, 35, 5769-5773.	4.8	28
121	Radical polymerization behavior of a vinyl monomer bearing five-membered cyclic carbonate structure and reactions of the obtained polymers with amines. Journal of Polymer Science Part A, 2005, 43, 584-592.	2.3	28
122	Ring-Opening RAFT Polymerization Based on Aromatization as Driving Force:Â Synthesis of Well-Defined Polymers Containing Anthracene Units in the Main Chain. Macromolecules, 2006, 39, 5976-5978.	4.8	28
123	Imidazoleâ€promoted copolymerization of epoxide and 3,4â€dihydrocoumarin and its application to a highâ€performance curing system. Journal of Polymer Science Part A, 2007, 45, 3798-3802.	2.3	28
124	Convenient synthesis of poly(γâ€benzylâ€ <scp>L</scp> â€glutamate) from activated urethane derivatives of γâ€benzylâ€ <scp>L</scp> â€glutamate. Journal of Polymer Science Part A, 2008, 46, 2649-2657.	2.3	28
125	Anionic alternating copolymerization of 3,4â€dihydrocoumarin and glycidyl ethers: A new approach to polyester synthesis. Journal of Polymer Science Part A, 2008, 46, 4092-4102.	2.3	28
126	RAFT Polymerization of Vinylthiophene Derivatives and Synthesis of Block Copolymers Having Cross-Linkable Segments. Macromolecules, 2009, 42, 7342-7352.	4.8	28

#	Article	IF	CITATIONS
127	Bioapplications of Polythiophene-g-Polyphenylalanine-Covered Surfaces. Macromolecular Chemistry and Physics, 2015, 216, 1868-1878.	2.2	28
128	Preparation of a zwitterionic polymer based on <scp>l</scp> -cysteine for recovery application of precious metals. RSC Advances, 2016, 6, 108689-108696.	3.6	28
129	Radical ringâ€opening polymerization and copolymerization with expansion in volume. Journal of Polymer Science, Polymer Symposia, 1978, 64, 17-26.	0.1	27
130	Synthesis of highly polymerizable 1,3â€benzoxazine assisted by phenyl thio ether and hydroxyl moieties. Journal of Polymer Science Part A, 2012, 50, 1457-1461.	2.3	27
131	Phosgene-free synthesis of polypeptides using activated urethane derivatives of α-amino acids: an efficient synthetic approach to hydrophilic polypeptides. RSC Advances, 2014, 4, 29890-29896.	3.6	27
132	Free-Radical Ring-Opening Polymerization. Journal of Macromolecular Science Part A, Chemistry, 1984, 21, 1611-1639.	0.3	26
133	Novel pyridinium salts as cationic thermal and photoinitiators and their photosensitization properties. Journal of Polymer Science Part A, 2002, 40, 1037-1046.	2.3	26
134	Generation of radical species on polypropylene by alkylboraneâ€oxygen system and its application to graft polymerization. Journal of Polymer Science Part A, 2009, 47, 6163-6167.	2.3	26
135	Synthesis of optically active polyurethanes by self-polyaddition of tyrosine-based monomers. Journal of Polymer Science Part A, 2004, 42, 1143-1153.	2.3	25
136	Synthesis of Amphiphilic and Doubleâ€Hydrophilic Block Copolymers Containing Poly(vinyl amine) Segments by RAFT Polymerization of <i>N</i> â€Vinylphthalimide. Macromolecular Chemistry and Physics, 2010, 211, 45-56.	2.2	25
137	Synthesis of a Reactive Polyester Bearing α,β-Unsaturated Ketone Groups by Anionic Alternating Copolymerization of Epoxide and Bicyclic Bis(γ-butyrolactone) Bearing Isopropenyl Group. Macromolecules, 2011, 44, 1814-1820.	4.8	25
138	Polyaddition of bifunctional 1,3â€benzoxazine and 2â€methylresorcinol. Journal of Polymer Science Part A, 2013, 51, 3867-3872.	2.3	25
139	Thiolâ€functionalized 1,3â€benzoxazine: Preparation and its use as a precursor for highly polymerizable benzoxazine monomers bearing sulfide moiety. Journal of Polymer Science Part A, 2014, 52, 1448-1457.	2.3	25
140	Facile synthesis of polymethionine oxides through polycondensation of activated urethane derivative of α-amino acid and their application to antifouling polymer against proteins and cells. Polymer Chemistry, 2015, 6, 1838-1845.	3.9	25
141	Benzylpyrazinium Salts as Thermally Latent Initiators in the Polymerization of Glycidyl Phenyl Ether:Â Substituent Effect on the Initiator Activity and Mechanistic Aspects. Macromolecules, 2004, 37, 5830-5834.	4.8	24
142	Synthesis of Polypeptide Having Defined Terminal Structures Through Polymerization of Activated Urethane-Derivative of γ-Benzyl- <scp>l</scp> -glutamate. Macromolecules, 2008, 41, 7913-7919.	4.8	24
143	Convenient and useful synthesis of <i>N</i> â€carboxyanhydride monomers through selective cyclization of urethane derivatives of αâ€amino acids. Journal of Polymer Science Part A, 2009, 47, 3839-3844.	2.3	24
144	Synthesis of networked polymers with lithium counter cations from a difunctional epoxide containing poly(ethylene glycol) and an epoxide monomer carrying a lithium sulfonate salt moiety. Journal of Polymer Science Part A, 2010, 48, 3113-3118.	2.3	24

#	Article	IF	CITATIONS
145	Alternating Copolymerization of Bicyclic Bis(γ-butyrolactone) and Epoxide through Zwitterion Process by Phosphines. Macromolecules, 2010, 43, 3585-3588.	4.8	24
146	Capture and release of CO ₂ by polyamidine. Journal of Polymer Science Part A, 2013, 51, 3404-3411.	2.3	24
147	Synthesis of polyhydroxyurethanes from di(trimethylolpropane) and their application to quaternary ammonium chloride-functionalized films. RSC Advances, 2015, 5, 71360-71369.	3.6	24
148	Radical copolymerization of 1,1-bis(ethoxycarbonyl)-2-vinylcyclopropane and methyl methacrylate accompanying ring opening and cyclization. Macromolecules, 1994, 27, 3982-3985.	4.8	23
149	One-Pot Transformation of Living Cationic Polymerization into a Living Anionic One by Samarium(II) Iodide. Synthesis of Poly(tetrahydrofuran-bepsiloncaprolactone) Block Copolymer. Macromolecules, 1995, 28, 1754-1757.	4.8	23
150	Synthesis of well-defined three-armed polystyrene having thiourethane-isocyanurate as the core structure derived from trifunctional five-membered cyclic dithiocarbonate. Journal of Polymer Science Part A, 2005, 43, 5498-5505.	2.3	23
151	Selective gas–solid phase fixation of carbon dioxide into oxirane-containing polymers: synthesis of polymer bearing cyclic carbonate group. Green Chemistry, 2006, 8, 138.	9.0	23
152	Non-Shrinking Networked Materials from the Cross-Linking Copolymerization of Spiroorthocarbonate with Bifunctional Oxetane. Macromolecular Rapid Communications, 2006, 27, 921-925.	3.9	23
153	Ring-opening polymerization of γ-benzyl-l-glutamate-N-carboxyanhydride in ionic liquids. Polymer, 2007, 48, 5867-5877.	3.8	23
154	Anisotropic Photomechanical Response of Stretched Blend Film Made of Polycaprolactoneâ€Polyvinyl Ether with Azobenzene Group as Side Chain. Macromolecular Chemistry and Physics, 2008, 209, 2071-2077.	2.2	23
155	Efficient accelerating effect of carbonyldiimidazole on epoxyâ€dicyandiamide curing system. Journal of Polymer Science Part A, 2011, 49, 250-256.	2.3	23
156	An immunoelectrochemical platform for the biosensing of â€~Cocaine use'. Sensors and Actuators B: Chemical, 2017, 246, 310-318.	7.8	23
157	Implementation of <i>meta</i> -Positioning in Tetrafunctional Benzoxazines: Synthesis, Properties, and Differences in the Polymerized Structure. Macromolecules, 2020, 53, 6866-6886.	4.8	23
158	Cationic ring-opening polymerization of six-membered cyclic carbonates with ester groups. Journal of Polymer Science Part A, 2001, 39, 1305-1317.	2.3	22
159	Photocationic and radical polymerizations of epoxides and acrylates by novel sulfonium salts. Journal of Polymer Science Part A, 2003, 41, 3816-3827.	2.3	22
160	Physically controlled, free-radical polymerization of vaporized fluoromonomer on solid surfaces. Journal of Polymer Science Part A, 2004, 42, 2621-2630.	2.3	22
161	Synthesis of Well-Defined Alternating Copolymers by RAFT Copolymerization of <i>N</i> -Vinylnaphthalimide. Macromolecules, 2008, 41, 8397-8404.	4.8	22
162	Miscibility of Polystyrene with One Hydroxystyrene Chain End into Poly(butyl methacrylate). Macromolecules, 2009, 42, 293-298.	4.8	22

#	Article	IF	CITATIONS
163	A new waterâ€soluble branched poly(ethylene imine) derivative having hydrolyzable imidazolidine moieties and its application to longâ€lasting release of aldehyde. Journal of Polymer Science Part A, 2010, 48, 4529-4536.	2.3	22
164	Synthesis and characterization of polyphenylenes with polypeptide and poly(ethylene glycol) side chains. Journal of Polymer Science Part A, 2015, 53, 1785-1793.	2.3	22
165	Synthesis of a novel cyclic 5-membered dithiocarbonate (DTC) having hydroxy group and its application to terminal functionalization of polyurethane. Journal of Polymer Science Part A, 2005, 43, 3711-3717.	2.3	21
166	Anionic Alternating Copolymerization of Ketene and Aldehyde:  Control of Enantioselectivity by Bisoxazoline-Type Ligand for Synthesis of Optically Active Polyesters. Macromolecules, 2006, 39, 8898-8900.	4.8	21
167	Crosslinkable polyurethane bearing a methacrylate structure in the side chain. Journal of Polymer Science Part A, 2007, 45, 3400-3407.	2.3	21
168	Polyaddition of bifunctional cyclic carbonate with diamine in ionic liquids: <i>In situ</i> ion composite formation and simple separation of ionic liquid. Journal of Polymer Science Part A, 2009, 47, 4629-4635.	2.3	21
169	Construction of reversible hydration–dehydration system by a model compound and a novel polymer bearing vicinal tricarbonyl structure. Journal of Polymer Science Part A, 2011, 49, 2245-2251.	2.3	21
170	Cyclotrimerization of diisocyanates toward highâ€performance networked polymers with rigid isocyanurate structure: Combination of aromatic and aliphatic diisocyanates for tunable flexibility. Journal of Polymer Science Part A, 2013, 51, 2631-2637.	2.3	21
171	Significant Improvement on Polybenzoxazine Toughness Achieved by Amine/Benzoxazine Copolymerizationâ€Induced Phase Separation. Macromolecular Chemistry and Physics, 2018, 219, 1700517.	2.2	21
172	Self-Catalyzed Carbon Dioxide Incorporation System. The Reaction of Copolymers Bearing an Epoxide and a Quaternary Ammonium Group with Carbon Dioxide. Macromolecules, 1994, 27, 6239-6244.	4.8	20
173	Efficient Fixation of Carbon Dioxide into Poly(glycidyl methacrylate) Containing Pendant Crown Ether. Macromolecules, 2003, 36, 1514-1521.	4.8	20
174	Volume-expandable monomer 5,5-dimethyl-1,3-dioxolan-2-one: Its copolymerization behavior with epoxide and its applications to shrinkage-controlled epoxy-curing systems. Journal of Applied Polymer Science, 2005, 96, 372-378.	2.6	20
175	Efficient Gasâ^'Solid Phase Reaction of Atmospheric Carbon Dioxide into Copolymers with Pendent Oxirane Groups:  Effect of Comonomer Component and Catalyst on Incorporation Behavior. Macromolecules, 2005, 38, 9939-9943.	4.8	20
176	Cyclopolymerization of Bisacrylamide Derived from α-Pinene through Larger Chiral Ring Formation. Macromolecules, 2005, 38, 2547-2549.	4.8	20
177	Development of highâ€performance networked polymers consisting of isocyanurate structures based on selective cyclotrimerization of isocyanates. Journal of Polymer Science Part A, 2011, 49, 5186-5191.	2.3	20
178	Synthesis of networked polymers by crosslinking reactions of polybenzoxazine bearing allyl group in the side chain. Journal of Polymer Science Part A, 2013, 51, 2035-2039.	2.3	20
179	Phosgeneâ€Free Syntheses and Hydrolytic Properties of Waterâ€Soluble Polyhydroxyurethanes with Ester–Carbonate–Ether Structures in Their Main Chains. Macromolecular Chemistry and Physics, 2017, 218, 1700043.	2.2	20
180	Block Copolymerization of Tetrahydrofuran and tert-Butyl Methacrylate. Polarity Inversion of Cationic Propagation Ends into Anionic Ones via Two-Electron Reduction by Samarium Iodide. Macromolecules, 1994, 27, 4853-4854.	4.8	19

#	Article	IF	CITATIONS
181	Synthesis of Poly(.epsiloncaprolactone-b- tetrahydrofuran-bepsiloncaprolactone) through the Samarium Iodide-Induced Transformation. Macromolecules, 1995, 28, 5372-5374.	4.8	19
182	Cationic copolymerization behavior of cyclic ether monomers with norbornene-containing cyclic carbonate or spiro-orthoether structure. Journal of Polymer Science Part A, 2004, 42, 5113-5120.	2.3	19
183	Novel sulfonium salts as thermal and photoinitiators for epoxide and acrylate polymerizations. Journal of Applied Polymer Science, 2004, 91, 589-597.	2.6	19
184	A Novel Construction of Ring-Opening Polymerization and Chemical Recycling System. Macromolecular Symposia, 2005, 226, 79-86.	0.7	19
185	Synthesis and characterization of block copolymers by metal- and solvent-free ring-opening polymerization of cyclic carbonates initiated from PEG-based surfactants. Journal of Polymer Science Part A, 2006, 44, 1985-1996.	2.3	19
186	Photodegradation of cellulose acetate film in the presence of benzophenone as a photosensitizer. Journal of Applied Polymer Science, 2007, 105, 3235-3239.	2.6	19
187	Computational evaluation of radical ring-opening polymerization. Journal of Polymer Science Part A, 2007, 45, 2827-2834.	2.3	19
188	Doubleâ€Hydrophilic and Amphiphilic Block Copolymers Synthesized by RAFT Polymerization of Monomers Carrying Chiral Amino Acids. Macromolecular Chemistry and Physics, 2009, 210, 217-229.	2.2	19
189	Synthesis and properties of methacrylateâ€based networked polymers having ionic liquid structures. Journal of Polymer Science Part A, 2010, 48, 4515-4521.	2.3	19
190	Fast equilibrium of zwitterionic adduct formation in reversible fixation–release system of CO2 by amidines under dry conditions. Tetrahedron, 2013, 69, 5476-5480.	1.9	19
191	Diethyl ketone-based imine as efficient latent hardener for epoxy resin. Journal of Applied Polymer Science, 2002, 83, 1744-1749.	2.6	18
192	Synthesis of novel ï€-conjugating polymers based on dibenzothiophene. Journal of Polymer Science Part A, 2003, 41, 1521-1526.	2.3	18
193	Direct incorporation of gaseous carbon dioxide into solid-state copolymer containing oxirane and quaternary ammonium halide structure as self-catalytic function. Journal of Polymer Science Part A, 2004, 42, 4941-4947.	2.3	18
194	Synthesis of novel moisture-curable polyurethanes end-capped with alkoxysilane and use as solvent-free elastic adhesives. Journal of Applied Polymer Science, 2008, 108, 236-244.	2.6	18
195	Synthesis of a norbornene monomer having cyclic carbonate moiety based on CO ₂ fixation and its transition metalâ€catalyzed polymerizations. Journal of Polymer Science Part A, 2010, 48, 3896-3902.	2.3	18
196	Preparation and properties of a novel polythiophene, poly[(3â€hexyliminomethyl)thiophene] with a high regioregularity. Journal of Polymer Science Part A, 2011, 49, 1190-1194.	2.3	18
197	Functional benzoxazines containing ammonium salt of carboxylic acid: Synthesis and highly activated thermally induced ringâ€opening polymerization. Journal of Polymer Science Part A, 2011, 49, 1724-1729.	2.3	18
198	Promoting effects of urethane derivatives of phenols on the ringâ€opening polymerization of 1,3â€benzoxazines. Journal of Polymer Science Part A, 2011, 49, 2183-2190.	2.3	18

#	Article	IF	CITATIONS
199	Reversible Cross-Linking and De-Cross-Linking System of Polystyrenes Bearing the Monohydrate Structure of Vicinal Tricarbonyl Group through Water–Alcohol Exchange Reactions at Ambient Conditions. Macromolecules, 2012, 45, 6640-6647.	4.8	18
200	Branched cationic polyurethane prepared by polyaddition of chloromethylated fiveâ€membered cyclic carbonate and diethylenetriamine in molten salts. Journal of Polymer Science Part A, 2012, 50, 47-51.	2.3	18
201	Supramolecular polymer gels formed from carboxy-terminated telechelic polybutadiene and polyamidine through amidinium-carboxylate salt bridge. Journal of Polymer Science Part A, 2014, 52, 1815-1824.	2.3	18
202	Unexpected Healability of an <i>ortho</i> Blocked Polybenzoxazine Resin. ACS Macro Letters, 2019, 8, 506-511.	4.8	18
203	Radical ring-opening polymerization of .alphacyclopropylstyrenes. Polymerization behavior and mechanistic aspects of polymerization by the molecular orbital method. Macromolecules, 1993, 26, 5748-5754.	4.8	17
204	Synthesis of poly(4-vinylbenzocyclobutene) and its reaction with dienophiles. Journal of Polymer Science Part A, 1995, 33, 707-715.	2.3	17
205	Block copolymerization of tetrahydrofuran with ?-valerolactone by the samarium iodide-induced transformation. Polymer Bulletin, 1996, 37, 597-601.	3.3	17
206	Transformation of the Cationic Growing Center of Poly(Tetrahydrofuran) into a Samarium Enolate. Block Copolymerization of Tetrahydrofuran with Methyl Methacrylate. Macromolecules, 1998, 31, 2774-2778.	4.8	17
207	Ring-opening metathesis copolymerization behaviors of cyclooctene and norbornene bearing a five- or six-membered ring cyclic carbonate. Journal of Polymer Science Part A, 2005, 43, 6599-6604.	2.3	17
208	Synthesis and properties of polymethacrylate bearing cyclic carbonate through urethane linkage. Journal of Polymer Science Part A, 2007, 45, 5781-5789.	2.3	17
209	Ring-Opening Copolymerization of 10-Methylene-9,10- Dihydroanthryl-9-Spirophenylcyclopropane via Free Radical and RAFT Processes. Macromolecules, 2008, 41, 632-639.	4.8	17
210	Anionic alternating copolymerization of a bifunctional sixâ€membered lactone and glycidyl phenyl ether: Selective synthesis of a linear polyester having lactone moiety. Journal of Polymer Science Part A, 2009, 47, 1661-1672.	2.3	17
211	Synthesis and Radical Polymerization of Adamantyl Methacrylate Monomers Having Hemiacetal Moieties. Macromolecules, 2009, 42, 9481-9485.	4.8	17
212	Synthesis and properties of methacrylate-based ionic networked polymers containing ionic liquids: comparison of ionic and nonionic networked polymers. Polymer Bulletin, 2011, 66, 771-778.	3.3	17
213	Synthesis of a methacrylic monomer having pendant cyclohexene cyclic carbonate—Easy CO ₂ fixation and radical polymerization. Journal of Polymer Science Part A, 2011, 49, 545-549.	2.3	17
214	Complex Structured Fluorescent Polythiophene Graft Copolymer as a Versatile Tool for Imaging, Targeted Delivery of Paclitaxel, and Radiotherapy. Biomacromolecules, 2016, 17, 2399-2408.	5.4	17
215	Radical ring-opening polymerization of 2-phenyl-3-vinyloxirane derivatives having a methyl group on the vinyl function. Journal of Polymer Science Part A, 1993, 31, 3489-3492.	2.3	16
216	Novel Poly(silyl enol ether)s via Radical Ring-Opening Polymerization and Their Conversion to Polyketones. Journal of the American Chemical Society, 1994, 116, 6453-6454.	13.7	16

#	Article	IF	CITATIONS
217	Curing behavior of epoxy resin initiated byS-alkylsulfonium salts of aromatic sulfides as thermal latent cationic initiators. Journal of Polymer Science Part A, 2001, 39, 868-871.	2.3	16
218	Solid-phase incorporation of gaseous carbon dioxide into oxirane-containing copolymers. Journal of Polymer Science Part A, 2004, 42, 3812-3817.	2.3	16
219	Controlled Cationic Ring-Opening Polymerization of a Six-Membered Cyclic Thiourethane. Macromolecules, 2004, 37, 3523-3525.	4.8	16
220	Gas-Phase Assisted Surface Polymerization of Vinyl Monomers with Fe-Based Initiating Systems. Macromolecular Chemistry and Physics, 2005, 206, 1778-1783.	2.2	16
221	Polymer having a trithiocarbonate moiety in the main chain: Application to reversible addition–fragmentation chain transfer controlled thermal and photoinduced monomer insertion polymerizations. Journal of Polymer Science Part A, 2006, 44, 6324-6331.	2.3	16
222	Synthesis of bicyclic bis(<i>γ</i> â€butyrolactone) derivatives bearing sulfide moieties and their alternating copolymers with epoxide. Journal of Polymer Science Part A, 2012, 50, 4666-4673.	2.3	16
223	Storage stability and curing behavior of epoxy-dicyandiamide systems with carbonyldiimidazole-Cu (II) complexes as the accelerator. Journal of Polymer Science Part A, 2013, 51, 3470-3476.	2.3	16
224	Carbonyldiimidazoleâ€accelerated efficient cure of epoxidized soybean oil with dicyandiamide. Journal of Polymer Science Part A, 2014, 52, 375-382.	2.3	16
225	Reversible crosslinking and decrosslinking of polymers containing alcohol moiety using an acyclic bifunctional vicinal triketone. Journal of Polymer Science Part A, 2014, 52, 921-928.	2.3	16
226	Mono―and bifunctional sixâ€membered cyclic carbonates synthesized by diphenyl carbonate toward networked polycarbonate films. Journal of Applied Polymer Science, 2015, 132, .	2.6	16
227	Radical polymerization behavior and thermal properties of vinyl ethylene carbonate derivatives bearing aromatic moieties. Polymer, 2016, 102, 167-175.	3.8	16
228	Polyurethanes with a new diol segment. Synthesis of polyurethanes containing a norbornene moiety and their reactions with thiols. Macromolecules, 1990, 23, 3032-3035.	4.8	15
229	Photocationic and radical polymerizations by novelN-phenacylammonium salts. Journal of Applied Polymer Science, 2004, 91, 3470-3476.	2.6	15
230	Cationic polymerization of seven-membered cyclic monothiocarbonate 1,3-dioxepan-2-thione. Journal of Polymer Science Part A, 2005, 43, 1014-1018.	2.3	15
231	Synthesis and properties of poly(carbonate-urethane) consisting of alternating carbonate and urethane moieties. Journal of Polymer Science Part A, 2006, 44, 2802-2808.	2.3	15
232	Copolymers containing a spiro orthoester moiety that undergo no shrinkage during cationic crosslinking. Journal of Polymer Science Part A, 2006, 44, 3666-3673.	2.3	15
233	Characteristics of pH-sensitive hydrogel microsphere of poly(acrylamide-co-methacrylic acid) with sharp pH–volume transition. Colloid and Polymer Science, 2007, 285, 873-879.	2.1	15
234	Facile synthesis of polymers bearing cyclic carbonate structure through radical solution and precipitation polymerizations accompanied by concurrent carbon dioxide fixation. Journal of Polymer Science Part A, 2009, 47, 3170-3176.	2.3	15

#	Article	IF	CITATIONS
235	Hydrophobic cellulose fiber surfaces modified with 2,2,3,3,3-pentafluoropropylmethacrylate (FMA) by vapor-phase-assisted photopolymerization. Polymer Journal, 2010, 42, 519-524.	2.7	15
236	Synthesis of reactive poly(norbornene): Ringâ€opening metathesis polymerization of norbornene monomer bearing cyclic dithiocarbonate moiety. Journal of Polymer Science Part A, 2011, 49, 1097-1103.	2.3	15
237	Synthesis of amphiphilic copolymer having acid″abile bicyclo bisoxazolidine in the side chain for controlled release of fragrance aldehyde. Journal of Polymer Science Part A, 2011, 49, 1881-1886.	2.3	15
238	Synthesis and radical ringâ€opening polymerization of adamantaneâ€containing bifunctional vinylcyclopropane undergoing volume expansion on polymerization. Journal of Polymer Science Part A, 2016, 54, 39-43.	2.3	15
239	Synthesis and thermal properties of vinyl copolymers with phenyl vinylethylene carbonate and N-substituted maleimides undergoing color change with acid–base switching. Polymer Chemistry, 2016, 7, 6770-6778.	3.9	15
240	Surface Modification with a Catechol-Bearing Polypeptide and Sensing Applications. Biomacromolecules, 2018, 19, 3067-3076.	5.4	15
241	Synthesis of Star-Shaped Block Copolymer of Tetrahydrofuran and Methyl Methacrylate. Macromolecules, 2000, 33, 4979-4981.	4.8	14
242	Phosphonamidates as thermally latent initiators in the polymerization of epoxides. Polymer Bulletin, 2001, 46, 277-283.	3.3	14
243	Preparation of end-?-allylnickel macroinitiator from poly(ethylene glycol) allenyl methyl ether and its application to the living coordination polymerization of isonitriles. Journal of Polymer Science Part A, 2001, 39, 495-499.	2.3	14
244	Acceleration effect of fiveâ€membered cyclic dithiocarbonate on an epoxy–amine curing system. Journal of Polymer Science Part A, 2007, 45, 4606-4611.	2.3	14
245	Synthesis of an amphiphilic polymer having hydrophobic acetal and hydrophilic pyrrolidone moieties and its application to persisting release of aldehyde as a proâ€fragrance. Journal of Polymer Science Part A, 2010, 48, 3816-3822.	2.3	14
246	Metalâ€free ringâ€opening polymerization of glycidyl phenyl ether initiated by tetraâ€ <i>n</i> â€butylammonium acetate and its application to the hydroxylâ€terminated telechelic polymer. Journal of Polymer Science Part A, 2011, 49, 4092-4097.	2.3	14
247	Synthesis and radical polymerization of styreneâ€based monomer having a fiveâ€membered cyclic carbonate structure. Journal of Polymer Science Part A, 2012, 50, 3046-3051.	2.3	14
248	Functional 1,3â€benzoxazine bearing 4â€pyridyl group: Synthesis and thermally induced polymerization behavior. Journal of Polymer Science Part A, 2014, 52, 410-416.	2.3	14
249	Synthesis and application of a novel poly-l-phenylalanine electroactive macromonomer as matrix for the biosensing of â€~Abused Drug' model. Polymer Chemistry, 2016, 7, 7304-7315.	3.9	14
250	Novel Transformation Reaction of a Cationic Propagating End into an Anionic One via Electron Transfer Induced by Samarium Iodide. Macromolecules, 1994, 27, 7011-7014.	4.8	13
251	Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry study on copolymers obtained by the alternating copolymerization of bis(I³-lactone) and epoxide with potassium tert-butoxide. Journal of Polymer Science Part A, 2005, 43, 2643-2649.	2.3	13
252	Synthesis of Polypeptide-Polyether Conjugates from an Activated Urethane Derivative of γ-Benzyl-L-glutamate as a Monomer. Polymer Bulletin, 2008, 60, 625-634.	3.3	13

#	Article	IF	CITATIONS
253	Simple Procedure for Polystyrene-Based Nanocomposite Preparation by Vapor-Phase-Assisted Surface Polymerization. Macromolecules, 2009, 42, 7930-7935.	4.8	13
254	Effect of metal triflates on direct polycondensation of lactic acid. Polymer Bulletin, 2010, 64, 435-443.	3.3	13
255	Anionic alternating copolymerization of epoxide and sixâ€membered lactone bearing naphthyl moiety. Journal of Polymer Science Part A, 2011, 49, 619-624.	2.3	13
256	Reversible fixation and release of carbon dioxide with a binary system consisting of polyethylene glycol and polystyreneâ€bearing cyclic amidine pendant group. Journal of Polymer Science Part A, 2014, 52, 2025-2031.	2.3	13
257	Promoting effect of thiophenols on the ringâ€opening polymerization of 1,3â€benzoxazine. Journal of Polymer Science Part A, 2014, 52, 2523-2527.	2.3	13
258	Novel ring-opening polymerization and its application to polymeric materials. Macromolecular Symposia, 2000, 159, 1-8.	0.7	12
259	Novel thermally latent self-crosslinkable copolymers bearing oxetane and hemiacetal ester moieties: The synthesis, self-crosslinking behavior, and thermal properties. Journal of Polymer Science Part A, 2005, 43, 4260-4270.	2.3	12
260	Effective fixation of carbon dioxide into poly(glycidyl methacrylate) in the presence of pyrrolidone polymers. Journal of Polymer Science Part A, 2005, 43, 4578-4585.	2.3	12
261	Matrix-assisted laser desorption/ionization time-of-flight mass spectroscopic analysis of telechelic polythiourethanes obtained by the cationic ring-opening polymerization of six-membered cyclic thiourethane. Journal of Polymer Science Part A, 2006, 44, 4281-4289.	2.3	12
262	Synthesis and properties of star-shaped polymers by the ring-opening polymerization of cyclic carbonate initiated with a trifunctional, poly(ethylene glycol)-based surfactant. Journal of Polymer Science Part A, 2006, 44, 6633-6639.	2.3	12
263	Synthesis and palladiumâ€catalyzed addition polymerization of norbornene carrying epoxy moiety. Journal of Polymer Science Part A, 2009, 47, 3982-3989.	2.3	12
264	Synthesis of polyester having sequentially ordered two orthogonal reactive groups by anionic alternating copolymerization of epoxide and bislactone. Journal of Polymer Science Part A, 2009, 47, 6750-6757.	2.3	12
265	Controlled polymerization of epoxides: Metalâ€free ringâ€opening polymerization of glycidyl phenyl ether initiated by tetraâ€ <i>n</i> â€butylammonium fluoride in the presence of protic compounds. Journal of Polymer Science Part A, 2011, 49, 5210-5216.	2.3	12
266	Synthesis and reversible hydration–dehydration system of copolymers bearing a vicinal tricarbonyl structure. Journal of Polymer Science Part A, 2012, 50, 2619-2625.	2.3	12
267	Facile synthesis of poly(<scp>l</scp> -tryptophan) through polycondensation of activated urethane derivatives. Journal of Polymer Science Part A, 2013, 51, 4565-4571.	2.3	12
268	Ring-opening polymerization of six-membered cyclic carbonates initiated by ethanol amine derivatives and their application to protonated or quaternary ammonium salt-functionalized polycarbonate films. Journal of Polymer Science Part A, 2016, 54, 487-497.	2.3	12
269	Synthesis and hydrolytic properties of water-soluble poly(carbonate–hydroxyurethane)s from trimethylolpropane. Polymer Chemistry, 2016, 7, 958-969.	3.9	12
270	Efficient Catalysts of Acyclic Guanidinium Iodide for the Synthesis of Cyclic Carbonates from Carbon Dioxide and Epoxides under Mild Conditions. Synthesis, 2020, 52, 150-158.	2.3	12

#	Article	IF	CITATIONS
271	Cationic ring-opening polymerization of a five membered cyclic dithiocarbonate having a tertiary amine moiety. Polymer Chemistry, 2022, 13, 267-274.	3.9	12
272	Polysulfoximines, a Novel Class of Sulfur-Containing Polymers. Macromolecules, 1996, 29, 2696-2697.	4.8	11
273	Synthesis and radical ring-opening polymerization behavior of vinylcyclopropane bearing six-membered cyclic acetal moiety. Journal of Polymer Science Part A, 1996, 34, 2029-2035.	2.3	11
274	Reaction of glycidyl phenyl ether with imines: A model study of latent hardeners of epoxy resins in the presence of water. Journal of Polymer Science Part A, 2002, 40, 971-975.	2.3	11
275	One-pot curing system of epoxy resin imines initiated with water. Journal of Applied Polymer Science, 2003, 88, 878-882.	2.6	11
276	Cationic ring-opening polymerization behavior of a five-membered cyclic thiocarbonate having a spiro-linked adamantane moiety. Journal of Polymer Science Part A, 2003, 41, 699-707.	2.3	11
277	Reaction of carbon dioxide with glycidol: The synthesis of a novel hyperbranched oligomer with a carbonate main chain with a hydroxyl terminal. Journal of Polymer Science Part A, 2004, 42, 2506-2511.	2.3	11
278	Novel anionic thermally latent initiating systems: Anionic polymerization of glycidyl phenyl ether with potassiumtert-butoxide/active methylene compounds. Journal of Polymer Science Part A, 2004, 42, 5407-5412.	2.3	11
279	Gas-Phase Assisted Surface Polymerization Behavior ofÎ ² -Propiolactone on Inorganic and Organic Substrates and Consequent Composite Production. Macromolecular Materials and Engineering, 2005, 290, 848-856.	3.6	11
280	Synthesis and properties of the polythiourethanes obtained by the cationic ring-opening polymerization of cyclic thiourethanes. Journal of Polymer Science Part A, 2006, 44, 4795-4803.	2.3	11
281	Synthesis of copolymers containing a spiro orthocarbonate moiety and evaluation of the volume change during their cationic crosslinking. Journal of Polymer Science Part A, 2006, 44, 7040-7053.	2.3	11
282	Gas-phase-assisted surface polymerization of methyl methacrylate with Fe(0)/TsCl initiator system. Journal of Applied Polymer Science, 2007, 103, 1879-1886.	2.6	11
283	Design of controlled releasing system: Synthesis of an amphiphilic copolymer endowed with acidâ€labile side chains based on quaternarization of amineâ€containing prepolymer with benzyl halide having acetal moiety. Journal of Polymer Science Part A, 2009, 47, 3241-3247.	2.3	11
284	Controlled Synthesis of Alternating Copolymers by RAFT Copolymerization of <i>N</i> â€Vinylphthalimide with <i>N</i> â€Isopropylacrylamide. Macromolecular Chemistry and Physics, 2010, 211, 1137-1147.	2.2	11
285	Allyl sulfonium salt as a novel initiator for active cationic polymerization of epoxide by shooting with radicals species. Journal of Polymer Science Part A, 2010, 48, 4178-4183.	2.3	11
286	Synthesis and photovoltaic behaviors of narrowâ€bandâ€gap ï€â€conjugated polymers composed of dialkoxybenzodithiophene―and thiopheneâ€based fused aromatic rings. Journal of Polymer Science Part A, 2011, 49, 1427-1433.	2.3	11
287	Convenient synthetic approach to poly(<scp>N</scp> â€Methyl <scp>L</scp> â€alanine) through polycondensation of activated urethane derivative of <scp>N</scp> â€methyl <scp>L</scp> â€alanine. Journal of Polymer Science Part A, 2017, 55, 1674-1679.	2.3	11
288	Reprocessable Aliphatic Polydithiourethanes Based on the Reversible Addition Reaction of Diisothiocyanates and Dithiols. Macromolecules, 2019, 52, 6080-6087.	4.8	11

#	Article	IF	CITATIONS
289	Solid-state catalytic incorporation of carbon dioxide into oxirane—polymer. Conversion of poly(glycidyl methacrylate) to carbonate-polymer under atomospheric pressure. Journal of the Chemical Society Chemical Communications, 1994, , 937-938.	2.0	10
290	Sulfur Analog of Spirocyclic Orthocarbonate Capable of Undergoing Tandem Double Ring-Opening Polymerization:Â Synthesis, Structure, and Cationic Polymerization of Dibenzo[3,4;10,11]-1,6,8,13-tetrathiaspiro[6.6]tridecane, Property of the Polymer, and Volume Change on Polymerization. Macromolecules, 1997, 30, 6721-6726.	4.8	10
291	Cationic ring-opening copolymerization of seven-membered cyclic sulfite and oxetane in one-shot feeding. Journal of Polymer Science Part A, 1997, 35, 1007-1012.	2.3	10
292	Synthesis of a poly(vinyl ether) containing a benzocyclobutene moiety and its reaction with dienophiles. Journal of Polymer Science Part A, 1999, 37, 59-67.	2.3	10
293	Selective reduction of main-chain 2-azetidinone moieties into azetidines for polymer modification. Journal of Polymer Science Part A, 2002, 40, 1912-1917.	2.3	10
294	Controlled cationic ring-opening polymerization of cyclic thiocarbonates with ester groups. Journal of Polymer Science Part A, 2003, 41, 185-195.	2.3	10
295	Samarium enolate on crosslinked polystyrene beads. II. An anionic initiator for the well-defined synthesis of poly(allyl methacrylate) on a solid support. Journal of Polymer Science Part A, 2003, 41, 853-860.	2.3	10
296	Cationic Copolymerization Behavior of Glycidyl Phenyl Ether with Seven-Membered Cyclic Carbonate. Macromolecular Chemistry and Physics, 2005, 206, 592-599.	2.2	10
297	Lewis acid-mediated double ring-opening reaction of an oligo(spiro-orthocarbonate): A novel class of expanding material. Journal of Polymer Science Part A, 2005, 43, 5323-5327.	2.3	10
298	Sequence-controlled cationic ring-opening copolymerization of spiroorthocarbonate and oxetane. Journal of Polymer Science Part A, 2006, 44, 3233-3241.	2.3	10
299	Anionic copolymerization of epoxide with bifunctional aromatic lactone derived from 2â€methylresorcinol. Journal of Polymer Science Part A, 2008, 46, 3447-3451.	2.3	10
300	Synthesis and optical properties of ï€-conjugated polymers composed of diester-substituted bithiophene and dibenzothiophene or carbazole. Polymer Bulletin, 2011, 67, 227-236.	3.3	10
301	Synthesis of polycarbosilanes having a fiveâ€membered cyclic carbonate structure and their application to prepare gel polymer electrolytes for lithium ion batteries. Journal of Polymer Science Part A, 2012, 50, 5161-5169.	2.3	10
302	Metalâ€free ringâ€opening block copolymerization of glycidyl phenyl ether with trimethylene carbonate initiated by tetraâ€ <i>n</i> â€butylammonium fluoride. Journal of Polymer Science Part A, 2012, 50, 3461-3465.	2.3	10
303	Development of highâ€performance networked polymers based on cyclotrimerization of isocyanates: Control of properties by addition of monoisocyanates. Journal of Polymer Science Part A, 2012, 50, 4365-4367.	2.3	10
304	Synthesis of hydrocarbon polymers containing bulky dibenzobicyclic moiety by ROMP and their characteristic optical properties. Journal of Polymer Science Part A, 2014, 52, 1392-1400.	2.3	10
305	Construction of reversible crosslinking–decrosslinking system consisting of a polymer bearing vicinal tricarbonyl structure and poly(ethylene glycol). Polymer Bulletin, 2016, 73, 345-356.	3.3	10
306	Phosgeneâ€Free Synthesis of Poly(<scp>l</scp> â€cysteine) Containing Styrene Moiety as a Reactive Function. Macromolecular Chemistry and Physics, 2017, 218, 1700078.	2.2	10

#	Article	IF	CITATIONS
307	Mild incorporation of CO ₂ into epoxides: Application to nonisocyanate synthesis of poly(hydroxyurethane) containing triazole segment by polyaddition of novel bifunctional fiveâ€membered cyclic carbonate and diamines. Journal of Polymer Science Part A, 2018, 56, 986-993.	2.3	10
308	One-Pot Nonisocyanate Synthesis of Sequence-Controlled Poly(hydroxy urethane)s from a Bis(six-membered cyclic carbonate) and Two Different Diamines. Macromolecules, 2021, 54, 2059-2067.	4.8	10
309	Molecular Design of Acrylates Containing Isocyanurate Moiety Undergoing Low Volume Shrinkage during Their Radical Photopolymerization. Macromolecules, 2021, 54, 5806-5814.	4.8	10
310	Novel Radical Ring-Opening Polyaddition of Dithiols to Bis(isopropenylepoxyethyl)benzene. Macromolecules, 1994, 27, 1284-1285.	4.8	9
311	Two-Electron Reduction of the Cationic Propagating End of Poly(tetrahydrofuran) into Terminating Nucleophiles by Samarium Iodide. Macromolecules, 1994, 27, 5523-5526.	4.8	9
312	Radical Ring-Opening Polyaddition of Bis(vinyloxirane) Derivatives and Dithiols. Macromolecules, 1995, 28, 5649-5654.	4.8	9
313	Transformation of the cationic growing center of poly(tetrahydrofuran) into an anionic one by bis(pentamethylcyclopentadienyl)samarium. Journal of Polymer Science Part A, 1998, 36, 2209-2214.	2.3	9
314	Samarium enolate on crosslinked polystyrene beads: anionic initiator for well defined synthesis of polymethacrylate on a solid support. Chemical Communications, 2000, , 2503-2504.	4.1	9
315	Solid Dimorphism of Tetra-Arylcyclobutadienecobalt Derivatives Bearing Long Aliphatic Lateral Groups. Molecular Crystals and Liquid Crystals, 2001, 369, 47-61.	0.3	9
316	Substituent effect on the cationic ring-opening polymerization of acyloxymethyl five-member cyclic dithiocarbonates. Journal of Polymer Science Part A, 2001, 39, 3967-3980.	2.3	9
317	Solution Phase and Solid Supported Syntheses of End-Functionalized Poly(MMA) by Aldol-Type Reaction of Samarium(III) Enolate at the Chain End. Macromolecules, 2002, 35, 6845-6850.	4.8	9
318	Cationic ring-opening polymerization of an epoxide by tropylium salts as thermal- and photolatent initiators. Journal of Polymer Science Part A, 2004, 42, 2166-2170.	2.3	9
319	A novel cyclic dithiocarbonate having siloxane moiety; Approach to curable siloxane oligomer. Journal of Polymer Science Part A, 2005, 43, 4422-4430.	2.3	9
320	Detailed study of the ring-opening metathesis polymerization of norbornene bearing a five- or six-membered ring cyclic carbonate along with volume expansion. Journal of Polymer Science Part A, 2006, 44, 395-405.	2.3	9
321	Curing of silylated polyurethane with BF ₃ â€monoethylamine complex as moistureâ€curable adhesives and their properties. Journal of Applied Polymer Science, 2007, 106, 3165-3170.	2.6	9
322	Living cationic ringâ€opening polymerization of fiveâ€membered cyclic dithiocarbonate controlled by neighboring group participation of carbamate group. Journal of Polymer Science Part A, 2007, 45, 4459-4464.	2.3	9
323	Synthesis and association behavior of cationic amphiphilic copolymers consisting of quaternary ammonium and nonionic surfactant moieties. Journal of Polymer Science Part A, 2007, 45, 5022-5030.	2.3	9
324	Preparation of networked polymer electrolytes by copolymerization of a methacrylate with an imidazolium salt structure and an ethyleneglycol dimethacrylate in the presence of lithium bis(trifluoromethanesulfonyl)imide. Polymer Bulletin, 2011, 66, 779-784.	3.3	9

#	Article	IF	CITATIONS
325	RAFTâ€approach to wellâ€defined telechelic vinyl polymers with hydroxyl terminals as polymeric diolâ€ŧype building blocks for polyurethanes. Journal of Polymer Science Part A, 2013, 51, 318-326.	2.3	9
326	Radical Ring-Opening Polymerization: Molecular Designs, Polymerization Mechanisms, and Living/Controlled Systems. ACS Symposium Series, 2015, , 19-50.	0.5	9
327	Synthesis and properties of novel poly(hydroxyurethane) from difunctional alicyclic carbonate and m-xylylenediamine and its possibility as gas barrier materials. Polymer Bulletin, 2016, 73, 677-686.	3.3	9
328	Isolation of Epimers in the Synthesis of Vinylcyclopropane Bearing Two Alanine Moieties and Their Radical Ring-Opening Polymerization. Macromolecules, 2017, 50, 5679-5686.	4.8	9
329	Synthesis of poly(2-ethyl-2-oxazoline)-block-polypeptide copolymers by combination of ring-opening polymerization of oxazoline and polycondensation of activated urethane derivatives of α-amino acids. Polymer Bulletin, 2018, 75, 5075-5088.	3.3	9
330	Catechol-Attached Polypeptide with Functional Groups as Electrochemical Sensing Platform for Synthetic Cannabinoids. ACS Applied Polymer Materials, 2020, 2, 172-177.	4.4	9
331	Phosgene-free and Chemoselective Synthesis of Novel Polyureas from Activated <scp>l</scp> -Lysine with Diphenyl Carbonate. Macromolecules, 2020, 53, 6809-6815.	4.8	9
332	Rapid Curing System of a Cyanate Ester Resin/Epoxy Resin with a Thermal Latent Polymeric Hardener Based on a Phenol–Amine Salt. ACS Applied Polymer Materials, 2022, 4, 84-90.	4.4	9
333	First example of poly(spiroorthocarbonate). A novel spiro ladder polymer. Macromolecules, 1991, 24, 2132-2133.	4.8	8
334	First Example of Anionic Polymerization with Azo-Containing Radical Initiators:Â Anionic Ring-Opening Polymerization of Cyclic Carbonate Initiated by Azobis(isobutyronitrile) and Related Azo Initiators. Macromolecules, 1996, 29, 2315-2317.	4.8	8
335	Transformation of the Cationic Growing Center of Poly(tetrahydrofuran) into Samarium Amide. Block Copolymerization of Tetrahydrofuran with Methyl Methacrylate. Macromolecules, 1996, 29, 3669-3673.	4.8	8
336	One-component epoxy resin with imine as water-initiated latent hardener: Improvement of the mechanical and adhesive properties by the addition of methacrylate copolymer. Journal of Applied Polymer Science, 2005, 96, 1943-1949.	2.6	8
337	Biodegradation behavior of acid-containing cellulose acetate film in soil. Journal of Applied Polymer Science, 2005, 98, 466-473.	2.6	8
338	Observation of optical activity in polythiourethane obtained by the controlled cationic ring-opening polymerization of chiral cyclic thiourethane derived from serine. Journal of Polymer Science Part A, 2005, 43, 1554-1561.	2.3	8
339	Novel siloxane-carrying dithiol derived from 5-membered cyclic dithiocarbonate and its curing reactions for coating application. Journal of Polymer Science Part A, 2005, 43, 5119-5126.	2.3	8
340	Thermal dissociation behavior of copolymers bearing hemiacetal ester moieties and their reactions with epoxides. Journal of Polymer Science Part A, 2006, 44, 3966-3977.	2.3	8
341	Transformation of vulcanized natural rubber into lower molecular weight polymers and their application to grafted copolymer synthesis with some vinyl monomers. Journal of Applied Polymer Science, 2006, 101, 4003-4010.	2.6	8
342	Thermally latent polyaddition and curing of Di―and triâ€functional hemiacetal esters with diepoxide by salenâ€zinc complex with tunable catalytic activity and model and networking reactions. Journal of Polymer Science Part A, 2008, 46, 1427-1439.	2.3	8

#	Article	IF	CITATIONS
343	Evaluation of the curing process of polyurethane end apped with trialkoxysilanes by a boron trifluoride/amine complex and organotin compound. Journal of Applied Polymer Science, 2008, 109, 608-616.	2.6	8
344	Anionic alternating copolymerization of epoxide and 3,4â€dihydrocoumarin and its application to networked polymers. Polymer International, 2009, 58, 970-975.	3.1	8
345	Synthesis of refractive starâ€shaped polysulfide by anionic polymerization of phenoxy propylene sulfide using an initiating system consisting of trifunctional thiol derived from fiveâ€membered cyclic dithiocarbonate and amine. Journal of Polymer Science Part A, 2010, 48, 525-531.	2.3	8
346	Radical ringâ€opening polymerization of fiveâ€membered cyclic vinyl sulfone using <i>p</i> â€ŧoluenesulfonyl halides. Journal of Polymer Science Part A, 2013, 51, 222-227.	2.3	8
347	Ring opening polymerization of epoxides with ureaâ€derivatives of 4â€aminopyridine as thermally latent anionic initiator. Journal of Polymer Science Part A, 2014, 52, 2518-2522.	2.3	8
348	Convenient phosgene-free synthesis of polypeptides bearing reactive alkene moiety through polycondensation of activated urethane derivative of α-amino acid. Polymer, 2016, 93, 174-180.	3.8	8
349	Synthesis of five- and six-membered cyclic guanidines by guanylation with isothiouronium iodides and amines under mild conditions. Synthetic Communications, 2017, 47, 442-448.	2.1	8
350	Synthesis of poly(<i>N</i> εâ€phenoxycarbonylâ€ <scp>l</scp> â€lysine) by polycondensation of activated urethane derivative and its application for selective modification of side chain with amines. Journal of Polymer Science Part A, 2018, 56, 2522-2530.	2.3	8
351	Radical ring-opening polyaddition of a bifunctional vinylcyclopropane bearing a spiroacetal moiety with dithiols. Journal of Polymer Science Part A, 1997, 35, 2487-2492.	2.3	7
352	Application of ketenes to well-defined polyester synthesis. II. Synthesis of reactive polyester by living anionic polymerization of (4-halophenyl)ethylketene. Journal of Polymer Science Part A, 2001, 39, 2093-2102.	2.3	7
353	Curing of epoxides withO,O-di-t-butyl phenylphosphonate as thermally latent initiator. Journal of Applied Polymer Science, 2001, 81, 2347-2351.	2.6	7
354	Pd(0)-catalyzed polyaddition of bifunctional vinyloxiranes with 1,3-dicarbonyl compounds: The synthesis of polymers containing hydroxy and carbonyl groups. Journal of Polymer Science Part A, 2002, 40, 2487-2494.	2.3	7
355	Synthesis and properties of poly(carbonate-co-ester)s obtained by cationic ring-opening copolymerization of spiroorthocarbonate and É>-caprolactone. Journal of Polymer Science Part A, 2006, 44, 2937-2942.	2.3	7
356	Deacetylation behavior of binary blend films of cellulose acetate and various polymers. Journal of Applied Polymer Science, 2006, 100, 1816-1823.	2.6	7
357	Enhanced degradation of cellulose acetate film containing diphenyliodonium salt–benzophenone. Cellulose, 2007, 14, 529-537.	4.9	7
358	Cationic ringâ€opening copolymerization behavior of trioxane and sevenâ€membered cyclic carbonate. Journal of Polymer Science Part A, 2008, 46, 733-739.	2.3	7
359	Syntheses of bisphenolâ€type oligomers having fiveâ€membered dithiocarbonate groups at the terminals and their application as accelerators to epoxyâ€amine curing system. Journal of Polymer Science Part A, 2008, 46, 1907-1912.	2.3	7
360	Solidâ€supported synthesis of wellâ€defined amphiphilic block copolymer from methacrylates. Journal of Polymer Science Part A, 2008, 46, 1990-1997.	2.3	7

#	Article	IF	CITATIONS
361	A new series of cyclic 5â€membered dithiocarbonates having urethane tether: Application as an adhesion promoter to epoxyâ€amine curing system. Journal of Polymer Science Part A, 2008, 46, 2588-2592.	2.3	7
362	Thermally latent reaction of hemiacetal ester with epoxide catalyzed by recyclable polymeric catalyst consisting of salenâ€zinc complex and polyurethane main chain. Journal of Polymer Science Part A, 2008, 46, 3673-3681.	2.3	7
363	Miscibility of Polynorbornene/Poly(styreneâ€ <i>co</i> â€hydroxystyrene) Binary Blend Based on Hydrogenâ€Bonding Interaction. Macromolecular Chemistry and Physics, 2009, 210, 1235-1240.	2.2	7
364	Cationic ringâ€opening polymerization of 3â€isochromanone through formation of benzyl cationic intermediate and its Friedelâ€Crafts reaction. Journal of Polymer Science Part A, 2009, 47, 2214-2218.	2.3	7
365	Anionic alternating copolymerization behavior of bifunctional sixâ€membered lactone and glycidyl phenyl ether. Journal of Polymer Science Part A, 2009, 47, 3662-3668.	2.3	7
366	Molecular Design and Polymerization Behavior of Monomers Polymerizable via Radical Ring-opening. ACS Symposium Series, 2009, , 33-48.	0.5	7
367	Polythiophenes bearing electronâ€withdrawing groups in the side chain and their application to bulk heterojunction solar cells. Journal of Polymer Science Part A, 2011, 49, 234-241.	2.3	7
368	Synthesis of photoâ€scissible poly(<i>p</i> â€hydroxystyrene) derivatives by radical copolymerization of <i>p</i> â€hydroxystyrene derivatives and methyl vinyl ketone. Journal of Polymer Science Part A, 2011, 49, 4714-4720.	2.3	7
369	Acidâ€promoted double ringâ€opening reaction of bicyclobis (γâ€butyrolactone) with alcohol and its application to polyester synthesis. Journal of Polymer Science Part A, 2012, 50, 1281-1289.	2.3	7
370	Synthesis and Fe(III)â€complexation ability of polyurethane bearing kojic acid skeleton in the main chain prepared by polyaddition of aliphatic hydroxyl groups without protection of phenolic hydroxyl groups. Journal of Polymer Science Part A, 2012, 50, 3493-3498.	2.3	7
371	Synthesis of amphiphilic block copolymer by metal-free ring-opening oligomerization of glycidyl phenyl ether initiated with tetra- <i>n</i> -butylammonium fluoride in the presence of poly(ethylene) Tj ETQq1 1 C). 728\$ #314	rgƁT /Overlo
372	Stable heterocumulene monomer in water; Synthesis and polymerization of (meth)acrylates having an isothiocyanate structure. Journal of Polymer Science Part A, 2013, 51, 4522-4529.	2.3	7
373	Convenient Synthesis of Acyclic Guanidines from Isothiouronium Iodides and Amines without Protection of the Amino Groups. Synlett, 2014, 25, 983-986.	1.8	7
374	Synthesis and property of polyoxazolidone having fluorene moiety by polyaddition of diisocyanate and diepoxide. Journal of Polymer Science Part A, 2014, 52, 1755-1760.	2.3	7
375	Substituent effect of <i>N</i> â€arylâ€ <i>N</i> â€2â€pyridyl ureas as thermal latent initiators on ringâ€opening polymerization of epoxide. Journal of Polymer Science Part A, 2015, 53, 2569-2574.	2.3	7
376	Synthesis and solidâ€state properties of crosslinked alternating copolymers of phenyl vinylethylene carbonate and <i>N</i> â€substituted maleimides. Journal of Applied Polymer Science, 2017, 134, 45247.	2.6	7
377	Cyclic and linear amidine catalysts for the efficient synthesis of cyclic trithiocarbonates from carbon disulfide and episulfides under mild conditions. Tetrahedron Letters, 2018, 59, 1702-1704.	1.4	7
378	Controlled release of fragrance with cross-linked polymers: synthesis and hydrolytic property of cross-linked amphiphilic copolymers bearing octanal-derived acetal moieties. Polymer Bulletin, 2018, 75, 197-207.	3.3	7

#	Article	IF	CITATIONS
379	Effect of oligo(spiroorthocarbonate)s on the volume shrinkage of epoxides during crosslinking by sulfonium saltâ€initiated cationic polymerization of epoxides. Journal of Polymer Science Part A, 2019, 57, 1564-1568.	2.3	7
380	Application of ketenes to well-defined polyester synthesis. III. Living anionic polymerization of ethyl(4-methoxyphenyl)ketene?Development of polyester having masked phenol side chain. Journal of Polymer Science Part A, 2001, 39, 1596-1600.	2.3	6
381	Novel approach to well-defined polyester by living anionic alternating copolymerization of ethylphenylketene with 4-methoxybenzaldehyde. Journal of Polymer Science Part A, 2001, 39, 2078-2084.	2.3	6
382	Sml2/Sml3 as a Convenient Bisinitiator for the Living Polymerization of Methacrylates. Macromolecular Chemistry and Physics, 2001, 202, 1614-1617.	2.2	6
383	NovelN-methylbenzothiazolium salts as hardeners for epoxy and acrylate monomers. Journal of Polymer Science Part A, 2003, 41, 3828-3837.	2.3	6
384	Unusual cationic ring-opening behavior of a novel six-membered ring spiro-orthocarbonate bearing adamantane backbones. Journal of Polymer Science Part A, 2004, 42, 3360-3364.	2.3	6
385	Role of cyclic dithiocarbonate as a promoter in the reaction of epoxide and imine in the presence of water. Journal of Polymer Science Part A, 2004, 42, 4276-4283.	2.3	6
386	Negative-working photoresist based on a first-generation dendrimer consisting of 4,4-diphenylpentyloxy units. Journal of Polymer Science Part A, 2005, 43, 1210-1215.	2.3	6
387	Synthesis of novel core-crosslinked graft copolymers from crosslinked poly(mercapto-thiourethane). Journal of Polymer Science Part A, 2005, 43, 5097-5102.	2.3	6
388	Anionic grafting polymerization of propylene sulfide onto human hair in water. Journal of Polymer Science Part A, 2006, 44, 3778-3786.	2.3	6
389	Unexpected substituent effect by a comonomer unit on the reactivity of an isocyanate group in a copolymer side chain. Journal of Polymer Science Part A, 2006, 44, 681-685.	2.3	6
390	Model reaction for thermally latent curing through addition of hemiacetal ester and epoxide by schiff-base–zinc halide complexes. Journal of Polymer Science Part A, 2007, 45, 3370-3379.	2.3	6
391	Epoxy curing process with small shrinkage based on binary nucleophilic reagent system consisting of amine and carboxylic acid. Journal of Applied Polymer Science, 2009, 112, 836-842.	2.6	6
392	Synthesis and Optical Properties of Ï€â€Conjugated Polymers Composed of Benzo[1,2â€b:4,5â€b′]dithiophene and Thiophenes Bearing Electronâ€Deficient Ethenyl Groups in the Side Chains. Macromolecular Chemistry and Physics, 2010, 211, 2490-2496.	2.2	6
393	Incorporation of ketone groups into poly(4â€hydroxystyrene)s main chain by radical copolymerization of 4â€(<i>tert</i> â€butoxy)styrene and 2,2â€diphenylâ€4â€methyleneâ€1,3â€dioxolane and their photoscission. Journal of Polymer Science Part A, 2010, 48, 4344-4350.	. 2.3	6
394	Synthesis and polymerization of styrene monomer carrying isothiocyanate moiety and its copolymerization with HEMA based on chemo-selectivity to nucleophiles. Journal of Polymer Science Part A, 2013, 51, 5215-5220.	2.3	6
395	Cationic copolymerization behavior of epoxide and 3-isochromanone. Journal of Polymer Science Part A, 2013, 51, 4213-4220.	2.3	6
396	Radical polymerization of 2,5â€norbornadienes containing ester groups by AIBN and oxygen gas. Journal of Polymer Science Part A, 2014, 52, 2528-2536.	2.3	6

#	Article	IF	CITATIONS
397	Facile Route for the Synthesis of Adamantaneâ€Containing Polypeptides through Polycondensation of Activated Urethane Derivative of αâ€Amino Acids. Macromolecular Chemistry and Physics, 2015, 216, 1348-1354.	2.2	6
398	Synthesis and Ringâ€Opening Polymerization of Functional Silacyclobutane Derivatives and Their Application to Lithium Ion Batteries. Macromolecular Symposia, 2015, 349, 21-28.	0.7	6
399	Supramolecular polymer gels from polystyrene bearing cyclic amidine Group and acrylic acid/ <i>n</i> â€butyl acrylate copolymers. Journal of Polymer Science Part A, 2016, 54, 765-770.	2.3	6
400	Polymerization of epoxide with hydroxylamides as thermally latent initiators. Journal of Polymer Science Part A, 2016, 54, 2611-2617.	2.3	6
401	A Catalystâ€Free and Chemoselective Synthesis of Episulfides from Epoxides in 2,3â€Butanediol without Formation of Poly(episulfide)s. ChemistrySelect, 2017, 2, 4466-4468.	1.5	6
402	Reversible capture and release of carbon dioxide by binary system of polyamidine and polyethylene glycol. Polymer Bulletin, 2017, 74, 1207-1219.	3.3	6
403	Synthesis of poly(hydroxyurethane) from 5â€membered cyclic carbonate under mild conditions in the presence of bicyclic guanidine and their reaction process. Journal of Polymer Science, 2021, 59, 502-509.	3.8	6
404	Cationic Polymerization of Seven-Membered Cyclic Sulfites. Substituent Effect on the Polymerization Behavior. Macromolecules, 1998, 31, 1710-1715.	4.8	5
405	Synthesis and radical ring-opening polymerization of 1-phenyl-2-vinylcyclopropane in the presence of TEMPO. Macromolecular Chemistry and Physics, 1999, 200, 1089-1093.	2.2	5
406	Spontaneous alternating copolymerization of isobutoxyallene with 4-phenyl-1,2,4-triazoline-3,5-dione. Journal of Polymer Science Part A, 2001, 39, 1564-1571.	2.3	5
407	A novel route to poly(?-hydroxyacrylic acid) derivatives by the hydrolysis of polymers containing 1,3-dioxolan-4-one moiety. Journal of Polymer Science Part A, 2001, 39, 1629-1633.	2.3	5
408	Anionic polymerization of 4-phenyl-1-buten-3-yne derivatives bearing electron-withdrawing groups. Journal of Polymer Science Part A, 2001, 39, 1016-1023.	2.3	5
409	Constitutional Isomerism IV. Synthesis and Characterization of Poly(amide-ester)s from Isophthaloyl Chloride and 4-Aminophenethyl Alcohol. Polymer Journal, 2001, 33, 364-370.	2.7	5
410	Application of ketenes to well-defined polyester synthesis (4): End-capping reactions in living anionic polymerization of ethylphenylketene. Journal of Polymer Science Part A, 2002, 40, 3103-3111.	2.3	5
411	Pd(0)-catalyzed polyaddition of bifunctional vinyloxiranes with phenol derivatives: The synthesis of polymers containing an allyl aryl ether moiety in the main chain. Journal of Polymer Science Part A, 2003, 41, 476-482.	2.3	5
412	Alternating Copolymerization of Ethylphenylketene with Benzaldehyde:Â Solvent- and Additive-Controlled Stereospecific Formation of Polyester. Macromolecules, 2003, 36, 3061-3065.	4.8	5
413	Polymerization of an epoxide by Woodsward's reagents as thermally latent initiators. Journal of Polymer Science Part A, 2004, 42, 2162-2165.	2.3	5
414	Synthesis and crosslinking reaction of poly(thiourethane)s having a siloxane moiety in the side chain. Journal of Polymer Science Part A, 2005, 43, 6492-6502.	2.3	5

#	Article	IF	CITATIONS
415	Infrared thermography analysis of the thermally latent polymerization of 3-ethyl-3-phenoxymethyloxetane. Journal of Polymer Science Part A, 2006, 44, 5519-5524.	2.3	5
416	Novel analytical method for the crosslinking process: Infrared thermographic analysis of the thermally latent cationic polymerization of a spiroorthoester and a bifunctional oxetane for the construction of a low-shrinkage curing system. Journal of Polymer Science Part A, 2007, 45, 2820-2826.	2.3	5
417	Synthesis of ï€â€conjugated copolymers composed of benzo[2,1,3]thiadiazole and thiophene units bearing various alkyl groups and their application to photovoltaic cells. Journal of Polymer Science Part A, 2011, 49, 3543-3549.	2.3	5
418	Synthesis and radical polymerization of styreneâ€based monomer having a fiveâ€membered cyclic dithiocarbonate structure. Journal of Polymer Science Part A, 2013, 51, 1398-1404.	2.3	5
419	Cationic polymerization of a novel oxetane-bearing ionic liquid structure and properties of the obtained poly(ionic liquid). Journal of Polymer Science Part A, 2014, 52, 2986-2990.	2.3	5
420	Synthesis of methacrylate polymer bearing cyanate groups and its chemoselective reaction with amines. Journal of Polymer Science Part A, 2014, 52, 699-706.	2.3	5
421	Supramolecular network polymers formed from polyamidine and carboxyâ€ŧerminated telechelic poly(<i>n</i> â€butyl acrylate) via amidiniumâ€carboxylate salt bridges. Journal of Polymer Science Part A, 2016, 54, 2148-2155.	2.3	5
422	Synthesis of thermally stable aromatic poly(spiroorthocarbonate)s having a <i>Cardo</i> or bent structure. Journal of Polymer Science Part A, 2016, 54, 1409-1416.	2.3	5
423	Color change of alternating copolymers with phenyl vinylethylene carbonate and N-phenylmaleimide in a solution and in the solid-state, depending on their structure. RSC Advances, 2017, 7, 9373-9380.	3.6	5
424	Substituent dependence of imidazoline derivatives on the capture and release system of carbon dioxide. New Journal of Chemistry, 2017, 41, 14390-14396.	2.8	5
425	Multifunctional Cyclic Carbonates Comprising Hyperbranched Polyacetals: Synthesis and Applications to Polymer Electrolytes and Networked Polymer Materials. Journal of Polymer Science Part A, 2019, 57, 2295-2303.	2.3	5
426	Wellâ€defined, environmentâ€friendly synthesis of polypeptides based on phosgeneâ€free transformation of amino acids into urethane derivatives and their applications. Polymer International, 2020, 69, 219-227.	3.1	5
427	Investigation of the hardener with latent and rapid curing based on phenolâ€amine salts for applications to cyanate ester resins. Journal of Applied Polymer Science, 2021, 138, 51286.	2.6	5
428	Radical polyaddition-isomerization of bifunctional vinylcyclopropanes with dithiols. Macromolecular Chemistry and Physics, 1998, 199, 2165-2172.	2.2	4
429	Synthesis of phosphate-pendant polymers and their application to thermally latent polymeric initiators. Journal of Polymer Science Part A, 2001, 39, 3365-3370.	2.3	4
430	Novel Reactive Polymers Containing Hemiacetal Ester and Vinyl Moieties: Synthesis and Selective Polymerization of 1-Methoxyallyl Methacrylate Derived from Methacrylic Acid and Methoxyallene. Macromolecular Rapid Communications, 2001, 22, 1335-1339.	3.9	4
431	Polysilsesquioxane containing tributylstannyl groups as intermediary derivative for organofunctionalization. Journal of Polymer Science Part A, 2002, 40, 286-292.	2.3	4
432	Radical copolymerization behavior of a highly fluorinated cyclic olefin with vinyl ether. Journal of Polymer Science Part A, 2002, 40, 1151-1156.	2.3	4

#	Article	IF	CITATIONS
433	Hydrazinium salts as thermally latent initiators in the polymerization of glycidyl phenyl ether. Journal of Applied Polymer Science, 2005, 95, 1439-1442.	2.6	4
434	Unusual cationic copolymerization behavior of a six-membered ring spiro-orthocarbonate bearing adamantane backbones with a monofunctional epoxide. Journal of Polymer Science Part A, 2005, 43, 1729-1740.	2.3	4
435	Latent reactive polymers containing isocyanate moiety that show extreme stability under aerobic atmosphere. Journal of Polymer Science Part A, 2006, 44, 2448-2453.	2.3	4
436	Controlled Synthesis of Amino Acid-Based Polymers by Reversible Addition Fragmentation Chain Transfer Polymerization. ACS Symposium Series, 2006, , 533-546.	0.5	4
437	Cationic copolymerization behavior of a bicyclic orthoester having hydroxy group with glycidyl phenyl ether and volume change on their copolymerization. Journal of Applied Polymer Science, 2006, 101, 1356-1361.	2.6	4
438	Thermally dissociable <i>pseudo</i> â€polyrotaxane as a supramolecular shrinkage suppressor for epoxy–amine curing system. Journal of Polymer Science Part A, 2008, 46, 2305-2308.	2.3	4
439	Synthesis of wellâ€defined and endâ€polymerizable starâ€shaped polysulfides and their application to negative photoresist. Journal of Polymer Science Part A, 2010, 48, 4385-4392.	2.3	4
440	Incorporation of ketone groups into poly(4â€hydroxystyrene)s main chain by radical copolymerization of 2,2â€diphenylâ€4â€methyleneâ€1,3â€dioxorane with <i>O</i> â€protected hydroxystyrenes and their photodegradable behavior. Journal of Polymer Science Part A, 2011, 49, 5142-5151.	2.3	4
441	Synthesis of graft terpolymers by addition reaction of aminoâ€terminated polyether to poly(methacrylate)s bearing fiveâ€membered cyclic dithiocarbonate moieties and application of the graft terpolymers as modifiers for wool. Journal of Polymer Science Part A, 2012, 50, 3259-3268.	2.3	4
442	Copolymerization of 2-isothiocyanatoethyl methacrylate and 2-hydroxyethyl methacrylate or methacrylic acid based on a nucleophile-tolerant property of the isothiocyanato group. Journal of Polymer Science Part A, 2013, 51, 5221-5229.	2.3	4
443	Synthesis of polycarbosilanes having sugar-derived structures as novel materials for cell cultivation. Journal of Polymer Science Part A, 2015, 53, 2267-2272.	2.3	4
444	Synthesis and radical ringâ€opening polymerization of vinylcyclopropanes derived from amino acids with hydrophobic moieties. Journal of Polymer Science Part A, 2017, 55, 3996-4002.	2.3	4
445	Construction of excellent thermal latent system for the synthesis of networked epoxide polymers by sulfonium salts. Journal of Polymer Science Part A, 2018, 56, 2096-2102.	2.3	4
446	Radical Ringâ€Opening Polymerization Behavior of 1,1â€Dicyanoâ€2â€Vinylcyclopropane and Its Copolymerization with 1â€Cyanoâ€1â€Esterâ€2â€Vinylcyclopropane. Journal of Polymer Science Part A, 2019, 5 1723-1729.	7,2.3	4
447	Synthesis of aliphatic polymers with high refractive index by photoinduced polyaddition of thiols to bifunctional allyl monomer containing tetrathiaspiro structure. Journal of Polymer Science Part A, 2019, 57, 1160-1164.	2.3	4
448	Fundamental investigation on interaction between hexafluoroisopropylalcohol-containing styrene and photochemical acid generator for rationale design of photoresist system. Journal of Polymer Science Part A, 2019, 57, 531-538.	2.3	4
449	Properties of poly(methacrylate)s bearing hydroxyurethane structures synthesized by various amines with poly(methacrylate)s containing five-membered cyclic carbonates obtained from poly(glycidyl) Tj ETQq1 1 0.7	78 3.3 14 rg	gB74/Overlock
450	Anionic ringâ€opening polymerization behavior of <i>trans</i> â€cyclohexene carbonate using metal <scp><i>tert</i>â€butoxides: Construction</scp> of living anionic ringâ€opening polymerization by lithium <i>tert</i> â€butoxide. Journal of Polymer Science, 2022, 60, 1416-1421.	3.8	4

#	Article	IF	CITATIONS
451	Living Polymerization of tert-Butyl 4-Vinylbenzoate by the Sml2/Sml3 System. Macromolecules, 1998, 31, 3388-3390.	4.8	3
452	Novel polyaddition system for poly(dithiohydantoin) through zwitter ion derived from diisothiocyanate and tetraaminoethylene. Journal of Polymer Science Part A, 2000, 38, 4200-4205.	2.3	3
453	Radical Copolymerization of 2,4-Disubstituted Enynes with Electron-Accepting Comonomers. Macromolecules, 2002, 35, 597-601.	4.8	3
454	Solid-supported well-defined synthesis of telechelic polyester by acid-promoted ring-opening polymerization of ?-caprolactone. Journal of Polymer Science Part A, 2003, 41, 116-118.	2.3	3
455	Samarium enolate on crosslinked polystyrene beads. III. Anionic initiator for well-defined synthesis of poly(hydroxyethyl methacrylate) on solid support. Journal of Polymer Science Part A, 2004, 42, 4417-4423.	2.3	3
456	Stereocontrolled anionic alternating copolymerization of ethylphenylketene with benzaldehyde by a bisoxazoline ligand. Journal of Polymer Science Part A, 2004, 42, 5384-5388.	2.3	3
457	Promotion effect of bifunctional five-membered cyclic dithiocarbonate on curing of one-component epoxy resin by imines as latent initiator. Journal of Applied Polymer Science, 2004, 94, 961-964.	2.6	3
458	Design of Latent Accelerators for Thermally Latent (Poly)addition of Epoxide with Hemiacetal Ester. Macromolecular Symposia, 2007, 249-250, 417-423.	0.7	3
459	Ring-opening grafting polymerization of cyclic monomers onto human hair. Journal of Polymer Science Part A, 2007, 45, 736-744.	2.3	3
460	Cascade chemical transformation of five-membered cyclic dithiocarbonate in a networked polysiloxane layer on a silicate surface. Journal of Polymer Science Part A, 2007, 45, 1170-1176.	2.3	3
461	Infrared thermographic analysis on copolymerization of spiroorthoester with oxetane. Journal of Polymer Science Part A, 2007, 45, 1388-1393.	2.3	3
462	Thermally latent synthesis of networked polymers from multifunctional hemiacetal ester and diepoxide catalyzed by Schiffâ€baseâ€zinc chloride complex. Journal of Polymer Science Part A, 2008, 46, 3682-3689.	2.3	3
463	Polycondensation of trialkoxysilane monomers accelerated by neighboring group participation of urea moiety. Journal of Polymer Science Part A, 2008, 46, 6654-6659.	2.3	3
464	Enhanced degradation of cellulose acetate films in the copresence of triphenylsulfonium salt and benzophenone. Journal of Applied Polymer Science, 2008, 109, 3157-3164.	2.6	3
465	Selective nucleophilic additions to poly(methacrylate)s containing isothiocyanate moieties in the side chains and their application in cross-linking. Journal of Polymer Science Part A, 2014, 52, 1832-1842.	2.3	3
466	Waterâ€stable copolymers containing isocyanate moiety protected by hydrophobic styrene segment and their reaction with amines. Journal of Polymer Science Part A, 2015, 53, 1934-1940.	2.3	3
467	Selective formation of a zwitterion adduct and bicarbonate salt in the efficient CO ₂ fixation by <i>N</i> -benzyl cyclic guanidine under dry and wet conditions. Beilstein Journal of Organic Chemistry, 2018, 14, 2204-2211.	2.2	3
468	Synthesis and cationic ringâ€opening polymerization of oxetane monomer containing fiveâ€membered cyclic carbonate moiety via highly chemoselective addition of CO ₂ . Journal of Polymer Science Part A, 2019, 57, 2606-2615.	2.3	3

#	Article	IF	CITATIONS
469	Six-Membered Cyclic Amidines as Efficient Catalysts for the Synthesis of Cyclic Dithiocarbonates from Carbon Disulfide and Epoxides under Mild Conditions. Synlett, 2020, 31, 92-96.	1.8	3
470	Synthesis and fundamental properties of methacrylate polymer containing <scp>fiveâ€membered</scp> cyclic trithiocarbonate group. Journal of Polymer Science, 2020, 58, 2126-2133.	3.8	3
471	Well-Defined Construction of Functional Macromolecular Architectures Based on Polymerization of Amino Acid Urethanes. Biomedicines, 2020, 8, 317.	3.2	3
472	Supramolecular polymer gels formed from polyamidine and random copolymer of <scp>nâ€butyl</scp> acrylate and acrylic acid. Journal of Polymer Science, 2021, 59, 721-728.	3.8	3
473	Synthesis of polymers containing vicinal tricarbonyl moiety and construction of reversible crosslinking–decrosslinking polymer system. Polymer International, 2021, 70, 1176-1181.	3.1	3
474	Radical ringâ€opening polymerization. Journal of Polymer Science Part A, 2001, 39, 265-276.	2.3	3
475	Synthesis and radical polymerization of acrylate and methacrylate bearing an isocyanurate core with adamantyl bisurethane moieties. Journal of Polymer Science, 2021, 59, 3141.	3.8	3
476	The First Polycondensation through a Free Radical Chain Process. Journal of the American Chemical Society, 1997, 119, 8718-8719.	13.7	2
477	Synthesis of phosphate end-functional polymers and application to thermally latent polymeric initiators. Journal of Polymer Science Part A, 2001, 39, 3832-3840.	2.3	2
478	Reduction of the 2-azetidinone moiety in the polymer main chain: A novel synthetic route to polyamine with hydroxymethyl pendant. Journal of Polymer Science Part A, 2001, 39, 3789-3796.	2.3	2
479	Cationic ring-opening polymerization of monothiocarbonate with a norbornene group. Journal of Polymer Science Part A, 2002, 40, 1698-1705.	2.3	2
480	Formation of a living anionic oligomer of ethylphenylketene on polystyrene beads and its application to the solid-supported synthesis of poly(methyl methacrylate). Journal of Polymer Science Part A, 2002, 40, 3455-3459.	2.3	2
481	Radical Copolymerization of a Highly Fluorinated Cyclic Olefin Octafluorocyclopentene with Alkyl Vinyl Ethers. Polymer Bulletin, 2003, 51, 1-8.	3.3	2
482	Palladium(0)-Catalyzed Synthesis of Unsaturated Polyesters from Bifunctional Vinyloxirane and Diacids. Polymer Journal, 2003, 35, 266-269.	2.7	2
483	Controlled Depolymerization of Poly(5-ethyl-5-phenyl-1,3-dioxan-2-one):  Selective Liberation of Cyclic Carbonate Monomer from Polymer Chain End. Macromolecules, 2004, 37, 251-253.	4.8	2
484	Naphthalene-Based Spiro Cyclic Monomer Undergoing Selective Radical and Cationic Polymerization. Macromolecules, 2007, 40, 4127-4129.	4.8	2
485	Chiral interaction between aromatic aldehydes and a polymer bearing large chiral rings obtained by cyclopolymerization of bisacrylamide. Polymer Journal, 2010, 42, 138-141.	2.7	2
486	Synthesis of polymethacrylamides having a sugar moiety with an aliphatic hydrocarbon spacer and their application to control adhesion of hepatocytes cancer cells on the materials. Journal of Polymer Science Part A, 2013, 51, 4003-4010.	2.3	2

#	Article	IF	CITATIONS
487	Synthesis and polymerization of styrene monomers bearing spiroorthoester structure and volume change during crosslinking by double ring-opening of the pendant spiroorthoesters of the obtained polymers. Journal of Polymer Science Part A, 2014, 52, 1790-1795.	2.3	2
488	High-molecular-weight poly(Cly-Val-Cly-Val-Pro) synthesis through microwave irradiation. Journal of Peptide Science, 2016, 22, 452-460.	1.4	2
489	Synthesis of thiourethanes and poly(thiourethane)s bearing carboxylic groups by nucleophilic acylation using cyclic acid anhydrides. Polymer Bulletin, 2016, 73, 1627-1637.	3.3	2
490	Synthesis and radical polymerization of styrene bearing 2-oxazolidone moiety derived from α-amino acid and investigation of its phenol adsorption behavior. Polymer Bulletin, 2017, 74, 2671-2683.	3.3	2
491	Synthesis of polydithiourethanes and their thermal, optical, and mechanical properties originated from monomers structure. Journal of Polymer Science Part A, 2018, 56, 2255-2262.	2.3	2
492	Synthesis of polymers having zwitterionic structure via the radical polymerization of 4-vinylphenyl isothiocyanate/cyclic amidine adduct. Journal of Polymer Science Part A, 2018, 56, 2303-2309.	2.3	2
493	Polymer with Zwitterionic Structure in Main Chain via Polyaddition of Bifunctional Cyclic Amidine and Diisothiocyanate. Journal of Polymer Science Part A, 2019, 57, 2145-2148.	2.3	2
494	Synthesis and physical properties of poly(urethane)s using vicinal diols derived from acrylate and styrene monomers. Journal of Polymer Science Part A, 2019, 57, 799-805.	2.3	2
495	Efficient synthesis and properties of soluble aliphatic oligo(spiroorthocarbonate)s from pentaerythritol derivatives. Journal of Polymer Science Part A, 2019, 57, 792-798.	2.3	2
496	Synthesis of reactive polyureas bearing vinylcyclopropane moiety in main chain and their radical crossâ€linking with multifunctional thiols. Journal of Polymer Science, 2020, 58, 1601-1608.	3.8	2
497	Curing behavior and properties of epoxy monomers with ethylenediaminetetraacetic dianhydride. Journal of Applied Polymer Science, 0, , 51626.	2.6	2
498	Palladium(0)-catalyzed Synthesis of Unsaturated Polyethers from Bifunctional Vinyloxiranes and Bisphenol Analogues. Polymer Journal, 2004, 36, 647-651.	2.7	2
499	Molecular Design of Isocyanurate Coreâ€Based Acrylates Undergoing Volume Expansion on Radical Photoâ€Polymerization. Macromolecular Rapid Communications, 2022, 43, e2200014.	3.9	2
500	Reduction of the cationic growing center of polyisobutylene by activated magnesium. Block copolymerization of isobutylene withtert-butyl methacrylate. Macromolecular Chemistry and Physics, 1998, 199, 2619-2623.	2.2	1
501	Synthesis of networked polystyrene endowed with nucleophilic reaction sites by the living anionic polymerization technique. Journal of Polymer Science Part A, 2000, 38, 2543-2547.	2.3	1
502	Living ring-opening polymerization of cyclic thiocarbonate. Macromolecular Symposia, 2003, 192, 25-30.	0.7	1
503	Solid-supported synthesis of well-defined polymethacrylate with samarium(III) enolate immobilized on polystyrene beads through an acetal-type linker. Journal of Polymer Science Part A, 2004, 42, 5026-5029.	2.3	1
504	Effect of thiophenol on thermal fragmentation of polyisoprene. Journal of Applied Polymer Science, 2007, 106, 3051-3057.	2.6	1

#	Article	IF	CITATIONS
505	Chemical modification of polynorbornene: transformation of ester moiety containing polynorbornene to carboxylic acid structure. Polymer Bulletin, 2013, 70, 643-651.	3.3	1
506	Cationic polymerization behavior of β-methylglycidyl ether derivatives and physical properties of their cationically cured materials. Journal of Applied Polymer Science, 2015, 132, n/a-n/a.	2.6	1
507	Synthesis of α-amino Acid N-carboxyanhydride ï¼^NCA) by Phosgene-free Method and Development of Polypeptide Synthesis. Journal of the Adhesion Society of Japan, 2016, 52, 333-341.	0.0	1
508	Synthesis and characterization of polyurethanes bearing carbosilane segments. RSC Advances, 2016, 6, 94803-94808.	3.6	1
509	Radical polyaddition of difunctional vinyloxirane with thiols for synthesis of linear and networked polysulfides. Journal of Polymer Science Part A, 2018, 56, 783-788.	2.3	1
510	Synthesis and characteristics of networked polycarbosilanes having urethane-crosslinked glucose groups. Polymer Bulletin, 2018, 75, 2391-2400.	3.3	1
511	Synthesis of polymethacrylateâ€bearing benzocyclobutene structure and extension to networked polymer based on thermal isomerization. Journal of Polymer Science Part A, 2019, 57, 2175-2180.	2.3	1
512	Synthesis of block copolymers through umpolung or treatment of propagating end of living cationic polytetrahydrofuran. Polymer Bulletin, 2019, 76, 3355-3370.	3.3	1
513	Molecular design and synthesis of crosslinked polyimides using radical isomerization of vinylcyclopropane with thiols. Journal of Applied Polymer Science, 2021, 138, 50529.	2.6	1
514	Development of functional polymers with cyclic ether moieties. I. Synthesis and properties of polyesters with dioxane moiety in the main chain. Journal of Polymer Science Part A, 2000, 38, 2536-2542.	2.3	0
515	Synthesis of an aprotic polar polymer with tetrahydrofuran moiety: Copolymer composition control in radical copolymerization with styrene using suspension system. Journal of Polymer Science Part A, 2001, 39, 453-458.	2.3	0
516	Functional polymers with cyclic ether moieties. II. Synthesis and properties of network polymers with tetrahydrofuran moiety. Journal of Polymer Science Part A, 2001, 39, 800-806.	2.3	0
517	New class of cationic ring-opening polymerizations of 2,2-diphenyl-1,3-oxathiolanes accompanying quantitative elimination of benzophenone. Journal of Polymer Science Part A, 2004, 42, 2943-2949.	2.3	0
518	Anionic polymerization of methacrylates by samarium (III) enolate on networked polystyrene: Effects of its sterically confined environment on polymerization behavior. Journal of Polymer Science Part A, 2009, 47, 1510-1521.	2.3	0
519	<i>p</i> â€Phenylenediamine Epoxy Resin Film for Redox Enzyme Detection. Macromolecular Symposia, 2010, 297, 108-113.	0.7	0
520	Miscibility of Carboxyâ€Terminated Polystyrene/Poly[2â€{ <i>N,Nâ€</i> dimethylamino)ethyl methacrylate] Blends. Macromolecular Chemistry and Physics, 2011, 212, 266-271.	2.2	0
521	Synthesis and radical polymerization of methacrylate endowed with bicyclobis(γâ€butyrolactone) moiety through methylene linker. Journal of Polymer Science Part A, 2015, 53, 2462-2468.	2.3	0
522	Special Issue "Ring-Opening Polymerization― Molecules, 2016, 21, 1720.	3.8	0

#	Article	IF	CITATIONS
523	Design of networked polymers based on radical ring-opening polymerization of vinyloxiranes. Polymer Journal, 2017, 49, 363-368.	2.7	0
524	Syntheses and thermal properties of polyesters bearing a carbosilane repeating unit. Polymer Bulletin, 2017, 74, 2391-2399.	3.3	0
525	Applications of a Polysiloxane Having Five-Membered Cyclic Carbonate Groups to Solid Polymer Electrolytes. Kobunshi Ronbunshu, 2017, 74, 502-507.	0.2	0
526	Synthesis and decrosslinking of networked polymers having zwitterion structure consisted by cyclic amidine and isothiocyanate. Journal of Polymer Science Part A, 2019, 57, 2131-2137.	2.3	0
527	Cover Image, Volume 69, Issue 3. Polymer International, 2020, 69, i.	3.1	0
528	618 Analysis of high strain rate plastic deformation of steel considering thermally activated dislocation motions. The Proceedings of Autumn Conference of Tohoku Branch, 2005, 2005.41, 255-256.	0.0	0
529	Synthesis of Functional Polypeptide by Phosgene-free Method. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2018, 76, 615-621.	0.1	0