Takeshi Kobayashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9110426/publications.pdf

Version: 2024-02-01

158 3,374 29 52
papers citations h-index g-index

158 158 158 158 2601

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Development of energy harvesting MEMS vibration device sensor with wideband response function in low-frequency domain. Microsystem Technologies, 2022, 28, 1389-1397.	2.0	4
2	Wearable MEMS Sensor Nodes for Animal Health Monitoring System. , 2022, , 283-305.		O
3	Flexible Parametric Speaker with Ultra-Thin PZT/Si MEMS Chips Integrated On Paper Substrate. , 2022, , .		O
4	Printed sensors for damage detection in large engineering structures. , 2022, , .		1
5	Large-scale printed strain sensors based on carbon ink incorporated into an intermittent conductive silver pattern. Japanese Journal of Applied Physics, 2021, 60, SBBM01.	1.5	3
6	Development of Flexible Haptic Device Based on Ultra-Thin PZT/Silicon Vibrator Array., 2021,,.		1
7	Flexible Film Loudspeaker Based on Piezoelectric PZT/Si Ultra-Thin MEMS Chips. , 2021, , .		0
8	Fabrication Process and Evaluation of Printed Strain Sensors for Detection of Maximum Strain Direction., 2021,,.		0
9	Practical Evaluation of Printed Strain Sensors Based on Long-Term Static Strain Measurements. Sensors, 2021, 21, 4812.	3.8	4
10	Ultra-thin PZT/Si chip integrated on paper substrates. Japanese Journal of Applied Physics, 2021, 60, SFFB12.	1.5	2
11	Printed Strain Sensors Based on an Intermittent Conductive Pattern Filled with Resistive Ink Droplets. Sensors, 2020, 20, 4181.	3.8	14
12	Concentric Array of Printed Strain Sensors for Structural Health Monitoring. Sensors, 2020, 20, 1997.	3.8	18
13	Carbon-based printed strain sensor array for remote and automated structural health monitoring. Smart Materials and Structures, 2020, 29, 105022.	3.5	12
14	Direct Delivery of Cas9-sgRNA Ribonucleoproteins into Cells Using a Nanoneedle Array. Applied Sciences (Switzerland), 2019, 9, 965.	2.5	19
15	Relationship between Contact Pressure and Motion Artifacts in ECG Measurement with Electrostatic Flocked Electrodes Fabricated on Textile. Scientific Reports, 2019, 9, 5897.	3.3	51
16	Plastic-scale-model assembly of ultrathin film MEMS piezoresistive strain sensor with conventional vacuum-suction chip mounter. Scientific Reports, 2019, 9, 1893.	3.3	9
17	Fabrication and Evaluation of MEMS Piezoelectric Vibration Sensor with Energy Harvesting Function. , 2019, , .		О
18	Investigation of Broadband Characteristics of Multi-Frequency Piezoelectric Micromachined Ultrasonic Transducer (MF-pMUT). IEEE Sensors Journal, 2019, 19, 860-867.	4.7	43

#	Article	IF	Citations
19	Printed strain sensors for early damage detection in engineering structures. Japanese Journal of Applied Physics, 2018, 57, 05GD05.	1.5	10
20	Development of Flexible Piezoelectric Strain Sensor Array. Electrical Engineering in Japan (English) Tj ETQq0	0 0 rgBT Over	lock 10 Tf 50
21	Wearable muscle training and monitoring device. , 2018, , .		4
22	Mechanomyogram measurement by lead zirconate titanate-based acoustic sensor. Japanese Journal of Applied Physics, 2018, 57, 11UD09.	1.5	2
23	Smart ping pong racket by ultrathin piezoelectric strain sensor array. , 2018, , .		0
24	Printed strain sensor with temperature compensation and its evaluation with an example of applications in structural health monitoring. Japanese Journal of Applied Physics, 2017, 56, 05EC02.	1.5	24
25	Passive MEMS DC Electric Current Sensor: Part II–Experimental Verifications. IEEE Sensors Journal, 2017, 17, 1238-1245.	4.7	24
26	High-efficiency MOSFET bridge rectifier for AlN MEMS cantilever vibration energy harvester. Japanese Journal of Applied Physics, 2017, 56, 04CC03.	1.5	6
27	Soft-rubber-packaged Pb(Zr,Ti)O ₃ MEMS touch sensors for human–machine interface applications. Japanese Journal of Applied Physics, 2017, 56, 04CC04.	1.5	5
28	Passive MEMS DC Electric Current Sensor: Part lâ€"Theoretical Considerations. IEEE Sensors Journal, 2017, 17, 1230-1237.	4.7	27
29	Development of ultra-thin MEMS micro mirror device. , 2017, , .		4
30	A New Cell Separation Method Based on Antibody-Immobilized Nanoneedle Arrays for the Detection of Intracellular Markers. Nano Letters, 2017, 17, 7117-7124.	9.1	25
31	Development of wide-band low-frequency MEMS vibration energy harvester for utility infrastructure core monitoring system., 2017,,.		3
32	Thin-film flexible sensor for omnidirectional strain measurements. Sensors and Actuators A: Physical, 2017, 263, 391-397.	4.1	24
33	Printed strain sensor array for application to structural health monitoring. Smart Materials and Structures, 2017, 26, 105040.	3.5	44
34	A passive position- and pose-free current sensor. , 2017, , .		1
35	Developing MEMS DC electric current sensor for end-use monitoring of DC power supply: Part VI â€" Corresponding relationship between sensitivity and magnetic induction. , 2017, , .		1
36	Fabrication of an ultrathin lead zirconate titanate mirror device mounted on flexible substrate. Japanese Journal of Applied Physics, 2017, 56, 10PF11.	1.5	5

#	Article	IF	Citations
37	Development of Flexible Piezoelectric Strain Sensor Array. IEEJ Transactions on Sensors and Micromachines, 2017, 137, 438-443.	0.1	1
38	Ultra-Thin Piezoelectric Strain Sensor Array Integrated on a Flexible Printed Circuit Involving Transfer Printing Methods. IEEE Sensors Journal, 2016, 16, 8840-8846.	4.7	49
39	Printed carbon-based sensors array for measuring 2D dynamic strain distribution and application in structural health monitoring. , $2016, \ldots$		1
40	S-shape spring sensor: Sensing specific low-frequency vibration by energy harvesting. Review of Scientific Instruments, 2016, 87, 085005.	1.3	14
41	Simulation of an ultralow-power power management circuit for MEMS cantilever piezoelectric vibration energy harvesters. Japanese Journal of Applied Physics, 2016, 55, 10TA06.	1.5	8
42	Highly sensitive piezoelectric micromachined ultrasonic transducer (pMUT) operated in air., 2016,,.		13
43	Investigation of geometric design in piezoelectric microelectromechanical systems diaphragms for ultrasonic energy harvesting. Applied Physics Letters, 2016, 108, .	3.3	45
44	Wireless vibration sensing system powered by a piezoelectric MEMS vibration energy harvester. , 2016, , .		4
45	Ultra-thin piezoelectric strain sensor array integrated on flexible printed circuit for structural health monitoring. , 2016, , .		3
46	Highly sensitive piezoelectric micromachined ultrasonic transducer operated in air. Micro and Nano Letters, 2016, 11, 558-562.	1.3	11
47	Design of piezoelectric MEMS cantilever for low-frequency vibration energy harvester. Japanese Journal of Applied Physics, 2016, 55, 06GP14.	1.5	17
48	Mechanoporation of living cells for delivery of macromolecules using nanoneedle array. Journal of Bioscience and Bioengineering, 2016, 122, 748-752.	2.2	25
49	Simulation and fabrication of a MEMS optical scanner device considering deformation caused by internal stress. Japanese Journal of Applied Physics, 2016, 55, 10TA11.	1.5	8
50	MEMS based piezoelectric ultrasonic energy harvester for self-powered under-water applications. , 2016, , .		3
51	Oscillating high-aspect-ratio monolithic silicon nanoneedle array enables efficient delivery of functional bio-macromolecules into living cells. Scientific Reports, 2015, 5, 15325.	3.3	57
52	A Silicon Disk with Sandwiched Piezoelectric Springs for Ultra-low Frequency Energy Harvesting. Journal of Physics: Conference Series, 2015, 660, 012093.	0.4	3
53	Vibration-energy-harvesting properties of hydrothermally synthesized (K,Na)NbO3films deposited on flexible metal foil substrates. Japanese Journal of Applied Physics, 2015, 54, 10ND06.	1.5	18
54	Piezoelectric strain sensor array fabricated by transfer printing methods. , 2015, , .		5

#	Article	IF	CITATIONS
55	Broadband piezoelectric micromachined ultrasonic transducer (pMUT) using mode-merged design. , 2015, , .		2
56	Micromachined piezoelectric ultrasonic transducer with ultra-wide frequency bandwidth. Applied Physics Letters, 2015, 106, .	3.3	60
57	Developing MEMS DC electric current sensor for end-use monitoring of DC power supply: Part V - corresponding relationship between polarization and output voltage. , 2015, , .		2
58	Manufacturing process for piezoelectric strain sensor sheet involving transfer printing methods. Japanese Journal of Applied Physics, 2015, 54, 10ND08.	1.5	23
59	A smart, intermittent driven particle sensor with an airflow change trigger using a lead zirconate titanate (PZT) cantilever. Measurement Science and Technology, 2014, 25, 025103.	2.6	2
60	Flow sensing and energy harvesting characteristics of a windâ€driven piezoelectric Pb(Zr0.52,) Tj ETQq0 0 0 rgBT	/Qyerlock	10 Tf 50 54
61	Impact of pulse poling on static and dynamic ferroelastic-domain contributions in tetragonal Pb(Ti,) Tj $ETQq1\ 1\ 0$.	784314 rg 2.5	BT /Overloci 25
62	Influence of pulse poling on the piezoelectric property of Pb(Zr0.52,Ti0.48)O3 thin films. AIP Advances, 2014, 4, 117116.	1.3	17
63	Piezoelectric PVDF film switch to activate event-driven system for chicken health monitoring., 2014,,.		1
64	Characterizations of epitaxial Bi(Mg _{1/2} Ti _{1/2})O ₃ â€"Bi(Zn _{1/2} Ti _{1/2})O ₃ â€"Bi(Zn _{1/2} Ti _{1/2})O ₃ 31/2Ti _{1/2})O ₃ 31/271/21	subs solid	2
65	Activation of piezoelectric property of PZT thin films by pulse poling. Journal of Physics: Conference Series, 2014, 557, 012130.	0.4	2
66	Ultra-low Power MEMS Activity Sensor for Wireless Health Monitoring System. IEEJ Transactions on Sensors and Micromachines, 2014, 134, 70-71.	0.1	2
67	MEMS-based microsensors using piezoelectric thin films as sensors and actuators. , 2014, , 37-47.		0
68	An electrostatic field sensor operated by self-excited vibration of MEMS-based self-sensitive piezoelectric microcantilevers. Sensors and Actuators A: Physical, 2013, 198, 87-90.	4.1	22
69	Integrated piezoelectric direct current sensor with actuating and sensing elements applicable to two-wire dc appliances. Measurement Science and Technology, 2013, 24, 125109.	2.6	27
70	A piezoelectric cantilever with a Helmholtz resonator as a sound pressure sensor. Journal of Micromechanics and Microengineering, 2013, 23, 114003.	2.6	3
71	A wake-up switch using a piezoelectric differential pressure sensor. , 2013, , .		4
72	AlN cantilever for differential pressure sensor. , 2013, , .		2

#	Article	lF	CITATIONS
73	Developing integrated piezoelectric direct current sensor with actuating and sensing elements. Micro and Nano Letters, 2013, 8, 858-860.	1.3	25
74	A piezoelectric flow sensor for use as a wake-up switch for a wireless sensor network node. Mechatronics, 2013, 23, 893-897.	3.3	13
75	Passive piezoelectric single-side MEMS DC current sensor with five parallel PZT plates applicable to two-wire DC electric appliances without using cord separator. Microsystem Technologies, 2013, 19, 923-927.	2.0	29
76	Effects of Bipolar Pulse Poling on the Ferroelectric and Piezoelectric Properties of Tetragonal Composition Pb(Zr _{0.3} ,Ti _{0.7})O ₃ Thin Films on Microelectromechanical Systems Microcantilevers. Japanese Journal of Applied Physics, 2013, 52, 09KA01.	1.5	14
77	Piezoelectric MEMS switch to activate event-driven wireless sensor nodes. Smart Materials and Structures, 2013, 22, 095001.	3.5	6
78	Growth of (111) One-Axis-Oriented Bi(Mg1/2Ti1/2)O3Films on (100)Si Substrates. Japanese Journal of Applied Physics, 2013, 52, 04CH09.	1.5	4
79	Unique Activity-Meter with Piezoelectric Poly(vinylidene difluoride) Films and Self Weight of the Sensor Nodes. Japanese Journal of Applied Physics, 2013, 52, 09KD15.	1.5	12
80	A piezoelectric cantilever-type differential pressure sensor for a low standby power trigger switch. Journal of Micromechanics and Microengineering, 2013, 23, 125023.	2.6	8
81	Crystal Structure Change with Applied Electric Field for (100)/(001)-oriented Polycrystalline Lead Zirconate Titanate Films. Materials Research Society Symposia Proceedings, 2013, 1507, 1.	0.1	3
82	All Polymer Piezoelectric Film for Low Resonance Frequency Vibration Driven Energy Harvesting Application. IEEJ Transactions on Sensors and Micromachines, 2013, 133, 285-289.	0.1	1
83	Impact of Reflow on the Output Characteristics of Piezoelectric Microelectromechanical System Devices. Japanese Journal of Applied Physics, 2012, 51, 09LD11.	1.5	7
84	Passive piezoelectric DC sensor applicable to one-wire or two-wire DC electric appliances for end-use monitoring of DC power supply. Microsystem Technologies, 2012, 18, 1897-1902.	2.0	37
85	Investigation of piezoelectric driven MEMS mirrors based on single and double S-shaped PZT actuator for 2-D scanning applications. Sensors and Actuators A: Physical, 2012, 184, 149-159.	4.1	25
86	Fabric pressure sensor array fabricated with die-coating and weaving techniques. Sensors and Actuators A: Physical, 2012, 184, 57-63.	4.1	112
87	Piezoelectric MEMS-based wideband energy harvesting systems using a frequency-up-conversion cantilever stopper. Sensors and Actuators A: Physical, 2012, 186, 242-248.	4.1	191
88	Development of piezoelectric microcantilever flow sensor with wind-driven energy harvesting capability. Applied Physics Letters, 2012, 100, .	3.3	116
89	Investigation of a MEMS piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers. Smart Materials and Structures, 2012, 21, 035005.	3.5	202
90	A new S-shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30ÂHz. Microsystem Technologies, 2012, 18, 497-506.	2.0	130

#	Article	IF	Citations
91	Developing passive piezoelectric MEMS sensor applicable to two-wire DC appliances with current switching. Micro and Nano Letters, 2012, 7, 68.	1.3	33
92	Impact of Reflow on the Output Characteristics of Piezoelectric Microelectromechanical System Devices. Japanese Journal of Applied Physics, 2012, 51, 09LD11.	1.5	9
93	A 2-D raster scanning mirror driven by piezoelectric cantilever actuator array in combinational mode $\$\#x2014;$ Bending and torsional. , $2011,$, .		0
94	Development of a MEMS DC electric current sensor applicable to two-wire electrical appliance cord. , 2011, , .		15
95	Novel piezoelectric actuation mechanism for a gimbal-less mirror in 2D raster scanning applications. Journal of Micromechanics and Microengineering, 2011, 21, 075001.	2.6	25
96	All Polymer Piezoelectric Film for the Application to Low Resonance Frequency Energy Harvester. Procedia Engineering, 2011, 25, 203-206.	1.2	7
97	Wafer-Scale MEMS Technology of New Vertically Laminated Cantilevers. Procedia Engineering, 2011, 25, 677-680.	1.2	2
98	Investigation of a Piezoelectric Driven MEMS Mirror based on Single S-shaped PZT Actuator. Procedia Engineering, 2011, 25, 701-704.	1.2	5
99	Investigation of Piezoelectric MEMS-based Wideband Energy Harvesting System with Assembled Frequency-up- conversion Mechanism. Procedia Engineering, 2011, 25, 725-728.	1.2	10
100	High Throughput Fabrication Process for Polymer MEMS using Molding and Printed Pattern Transfer. Procedia Engineering, 2011, 25, 876-879.	1.2	1
101	Piezoelectric MEMS Energy Harvester for Low-Frequency Vibrations With Wideband Operation Range and Steadily Increased Output Power. Journal of Microelectromechanical Systems, 2011, 20, 1131-1142.	2.5	327
102	A digital output accelerometer using MEMS-based piezoelectric accelerometers and arrayed CMOS inverters with satellite capacitors. Smart Materials and Structures, 2011, 20, 065017.	3.5	25
103	A 2-D MEMS scanning mirror based on dynamic mixed mode excitation of a piezoelectric PZT thin film S-shaped actuator. Optics Express, 2011, 19, 13812.	3.4	42
104	A MEMS-based piezoelectric cantilever patterned with PZT thin film array for harvesting energy from low frequency vibrations. Physics Procedia, 2011, 19, 129-133.	1.2	57
105	A scrape-through piezoelectric MEMS energy harvester with frequency broadband and up-conversion behaviors. Microsystem Technologies, 2011, 17, 1747-1754.	2.0	57
106	Flexible fabric keyboard with conductive polymer-coated fibers. , 2011, , .		13
107	A MEMS-based wideband piezoelectric energy harvester system using mechanical stoppers. , 2011, , .		1
108	A 3-D MEMS VOA using translational attenuation mechanism based on piezoelectric PZT thin film actuators. Procedia Engineering, 2010, 5, 613-616.	1.2	2

#	Article	IF	Citations
109	A Digital Output Accelerometer Using MEMS-based Piezoelectric Accelerometer Connected to Parallel CMOS Circuit. Procedia Engineering, 2010, 5, 1071-1074.	1.2	3
110	Characterization of piezoelectric PZT beam actuators for driving 2D scanning micromirrors. Sensors and Actuators A: Physical, 2010, 162, 336-347.	4.1	60
111	Low-Voltage Driven MEMS VOA Using Torsional Attenuation Mechanism Based on Piezoelectric Beam Actuators. IEEE Photonics Technology Letters, 2010, 22, 1355-1357.	2.5	13
112	A digital output piezoelectric accelerometer using a Pb(Zr, Ti)O3thin film array electrically connected in series. Smart Materials and Structures, 2010, 19, 105030.	3.5	39
113	A Piezoelectric-Driven Three-Dimensional MEMS VOA Using Attenuation Mechanism With Combination of Rotational and Translational Effects. Journal of Microelectromechanical Systems, 2010, 19, 1370-1379.	2.5	27
114	MEMS VOA based on torsional and bending attenuation mechanisms using piezoelectric cantilever integrated with 1& #x00D7; 10 PZT thin film actuators. , 2010, , .		0
115	A Digital Output Piezoelectric Accelerometer using Pattenrned Pb(Zr, Ti)O <inf>3</inf> Thin Films Electrically Connected in Series., 2009,,.		9
116	Ultra-Low Power Event-Driven Wireless Sensor Node Using Piezoelectric Accelerometer for Health Monitoring. Japanese Journal of Applied Physics, 2009, 48, 070222.	1.5	22
117	<i>In situ</i> Observation of the Fatigue-Free Piezoelectric Microcantilever by Two-Dimensional X-ray Diffraction. Japanese Journal of Applied Physics, 2009, 48, 09KA03.	1.5	13
118	A 1-V Operated MEMS Variable Optical Attenuator Using Piezoelectric PZT Thin-Film Actuators. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 1529-1536.	2.9	37
119	A 2-D MEMS Scanning Mirror Using Piezoelectric PZT Beam Actuators. Procedia Chemistry, 2009, 1, 1303-1306.	0.7	16
120	Low speed piezoelectric optical microscanner actuated by piezoelectric microcantilevers using LaNiO ₃ thin film. Smart Materials and Structures, 2009, 18, 065008.	3.5	15
121	Van der Pol type self-excited micro-cantilever probe ofÂatomic force microscopy. Nonlinear Dynamics, 2008, 54, 137-149.	5.2	55
122	Deflection of wafers and cantilevers with Pt/LNO/PZT/LNO/Pt/Ti/SiO2 multilayered structure. Thin Solid Films, 2008, 516, 5272-5276.	1.8	16
123	Fabrication of piezoelectric microcantilevers using LaNiO ₃ buffered Pb(Zr,Ti)O ₃ thin film. Journal of Micromechanics and Microengineering, 2008, 18, 035007.	2.6	34
124	A fatigue test method for Pb(Zr,Ti)O ₃ thin films by using MEMS-based self-sensitive piezoelectric microcantilevers. Journal of Micromechanics and Microengineering, 2008, 18, 115007.	2.6	18
125	The influence of DC bias on the displacement and sensor output of self-sensitive piezoelectric microcantilevers. Journal of Micromechanics and Microengineering, 2008, 18, 035025.	2.6	12
126	Microelectromechanical Systems-Based Electrostatic Field Sensor Using Pb(Zr,Ti)O ₃ Thin Films. Japanese Journal of Applied Physics, 2008, 47, 7533.	1.5	41

#	Article	IF	Citations
127	In-Plane Lattice Strain Evaluation in Piezoelectric Microcantilever by Two-Dimensional X-ray Diffraction. Japanese Journal of Applied Physics, 2008, 47, 7537.	1.5	12
128	DEVELOPMENT OF SELF-SENSITIVE PIEZOELECTRIC CANTILEVER UTILIZING PZT THIN FILM DEPOSITED ON SOI WAFER. Integrated Ferroelectrics, 2007, 89, 116-122.	0.7	2
129	Novel MEMS-based thermometer with low power consumption for health-monitoring network application. Proceedings of SPIE, 2007, 6800, 390.	0.8	3
130	Sensing Property of Self-Sensitive Piezoelectric Microcantilever Utilizing Pb(Zr0.52/Ti0.48)O3Thin Film and LaNiO3Oxide Electrode. Japanese Journal of Applied Physics, 2007, 46, 7073-7078.	1.5	28
131	Piezoelectric Optical Micro Scanner with Built-in Torsion Sensors. Japanese Journal of Applied Physics, 2007, 46, 2781-2784.	1.5	27
132	Tunable Optical Microscanner Driven by Piezoelectric Actuator. Japanese Journal of Applied Physics, 2007, 46, 6429-6432.	1.5	12
133	MEMS-based piezoelectric micro cantilever using LaNiO <inf>3</inf> buffered PZT thin film. Applications of Ferroelectrics, IEEE International Symposium on, 2007, , .	0.0	3
134	Combined Device of Optical Microdisplacement Sensor and PZT-Actuated Micromirror., 2007,,.		4
135	Photovoltaic properties of ferroelectrics and their applications to optical sensor. , 2007, 6800, 232.		1
136	Influence of Pt/Ti Sputtering Temperature on the Orientation of CSD-Derived Pb(Zr _{0.52} Ti _{0.48})O ₃ Thin Films. Ferroelectrics, 2007, 357, 233-242.	0.6	4
137	Degradation in the ferroelectric and piezoelectric properties of Pb(Zr,Ti)O3thin films derived from a MEMS microfabrication process. Journal of Micromechanics and Microengineering, 2007, 17, 1238-1241.	2.6	29
138	Smart optical microscanner with piezoelectric resonator, sensor, and tuner using Pb(Zr,Ti)O3 thin film. Applied Physics Letters, 2007, 90, 183514.	3.3	36
139	Preparation and characterization of wafer scale lead zirconate titanate film for MEMS application. Sensors and Actuators A: Physical, 2007, 139, 152-157.	4.1	15
140	Quality factor of micro cantilevers transduced by piezoelectric lead zirconate titanate film. Microsystem Technologies, 2007, 13, 1517-1522.	2.0	12
141	Wafer scale lead zirconate titanate film preparation by sol–gel method using stress balance layer. Thin Solid Films, 2006, 515, 1506-1510.	1.8	28
142	Photovoltaic Effect of Crystalline-Oriented Lead Lanthanum Zirconate Titanate in Layered Film Structure. Japanese Journal of Applied Physics, 2006, 45, 9115-9118.	1.5	6
143	The effect of heat-treatment conditions on mechanical and morphological properties of a FIB-milled glassy carbon mold with micro patterns. Journal of Micromechanics and Microengineering, 2006, 16, 1277-1284.	2.6	6
144	Photovoltaic Effect with the Structural Control and its Application to the Optical Sensor. Key Engineering Materials, 2006, 320, 61-64.	0.4	0

#	Article	IF	CITATIONS
145	Fabrication and performance of a flat piezoelectric cantilever obtained using a sol–gel derived PZT thick film deposited on a SOI wafer. Smart Materials and Structures, 2006, 15, S137-S140.	3 . 5	18
146	Preparation and Its Photovoltaic Effect of Ferroelectric Film. Key Engineering Materials, 2006, 301, 193-196.	0.4	4
147	Fabrication of Flat PZT Cantilevers through MEMS Technologies and Application to Optical MEMS. Key Engineering Materials, 2006, 301, 37-40.	0.4	1
148	Broadband MEMS shunt switches using PZT/HfO2 multi-layered high k dielectrics for high switching isolation. Sensors and Actuators A: Physical, 2005, 121, 275-281.	4.1	20
149	Effect of multi-coating process on the orientation and microstructure of lead zirconate titanate (PZT) thin films derived by chemical solution deposition. Thin Solid Films, 2005, 489, 74-78.	1.8	108
150	Photovoltaic effect of ferroelectric PLZT in a layered and preferentially oriented film., 2005, 6035, 190.		0
151	Development of 1D Optical Micro Scanner Driven by Piezoelectric Actuators., 2005,, 789.		3
152	Fabrication of Optical Micro Scanner Driven by PZT Actuators. Japanese Journal of Applied Physics, 2005, 44, 7078-7082.	1.5	68
153	Formation and its Photovoltaic Effect of Layered Ferroelectric Film Structure. Key Engineering Materials, 2004, 269, 241-244.	0.4	1
154	Formation and its characteristics of PLZT layered film structure for transducers. , 2004, , .		2
155	Sol-gel deposition of PZT thick film on Pt/Ti/SOI substrate and application to 2D micro scanning mirror., 2004,,.		5
156	An integrated fabrication of sol-gel derived PZT thick films and SOI for 2D optical micromirror., 0,,.		0
157	Wideband and high reliability RF-MEMS switches using PZT/HfO/sub 2 / multi-layered high K dielectrics. , 0 , , .		3
158	Microneedle Array-Assisted, Direct Delivery of Genome-Editing Proteins Into Plant Tissue. Frontiers in Plant Science, $0,13,.$	3.6	5