Espen Melum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/911018/publications.pdf

Version: 2024-02-01

		201674	161849
54	4,165	27	54
papers	citations	h-index	g-index
55	55	55	6380
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature, 2015, 517, 386-390.	27.8	525
2	Dense genotyping of immune-related disease regions identifies nine new risk loci for primary sclerosing cholangitis. Nature Genetics, 2013, 45, 670-675.	21.4	339
3	Genome-Wide Association Analysis in Primary Sclerosing Cholangitis. Gastroenterology, 2010, 138, 1102-1111.	1.3	325
4	Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation. Nature Biotechnology, 2015, 33, 845-852.	17.5	318
5	Genome-wide association study of primary sclerosing cholangitis identifies new risk loci and quantifies the genetic relationship with inflammatory bowel disease. Nature Genetics, 2017, 49, 269-273.	21.4	230
6	Genome-wide association analysis in primary sclerosing cholangitis identifies two non-HLA susceptibility loci. Nature Genetics, 2011, 43, 17-19.	21.4	221
7	Reconstruction of the mouse extrahepatic biliary tree using primary human extrahepatic cholangiocyte organoids. Nature Medicine, 2017, 23, 954-963.	30.7	210
8	Extended analysis of a genome-wide association study in primary sclerosing cholangitis detects multiple novel risk loci. Journal of Hepatology, 2012, 57, 366-375.	3.7	196
9	Cholangiocyte organoids can repair bile ducts after transplantation in the human liver. Science, 2021, 371, 839-846.	12.6	170
10	Genome-wide association analysis in Primary sclerosing cholangitis and ulcerative colitis identifies risk loci at <i>GPR35</i> and <i>TCF4</i> . Hepatology, 2013, 58, 1074-1083.	7.3	150
11	Characterization of animal models for primary sclerosing cholangitis (PSC). Journal of Hepatology, 2014, 60, 1290-1303.	3.7	129
12	Cholangiocarcinoma in primary sclerosing cholangitis is associated with NKG2D polymorphisms. Hepatology, 2008, 47, 90-96.	7.3	119
13	Three ulcerative colitis susceptibility loci are associated with primary sclerosing cholangitis and indicate a role for <i>IL2, REL</i> , and <i>CARD9</i> . Hepatology, 2011, 53, 1977-1985.	7.3	110
14	Early-onset Crohn's disease and autoimmunity associated with a variant in CTLA-4. Gut, 2015, 64, 1889-1897.	12.1	106
15	Highâ€throughput Tâ€cell receptor sequencing across chronic liver diseases reveals distinct diseaseâ€associated repertoires. Hepatology, 2016, 63, 1608-1619.	7.3	104
16	The biliary epithelium presents antigens to and activates natural killer T cells. Hepatology, 2015, 62, 1249-1259.	7.3	83
17	Isolation and propagation of primary human cholangiocyte organoids for the generation of bioengineered biliary tissue. Nature Protocols, 2019, 14, 1884-1925.	12.0	67
18	The gut microbiota contributes to a mouse model of spontaneous bile duct inflammation. Journal of Hepatology, 2017, 66, 382-389.	3.7	60

#	Article	IF	CITATIONS
19	Novel serum and bile protein markers predict primary sclerosing cholangitis disease severity and prognosis. Journal of Hepatology, 2017, 66, 1214-1222.	3.7	51
20	Gut and liver T-cells of common clonal origin in primary sclerosing cholangitis-inflammatory bowel disease. Journal of Hepatology, 2017, 66, 116-122.	3.7	49
21	Fine mapping and replication of genetic risk loci in primary sclerosing cholangitis. Scandinavian Journal of Gastroenterology, 2012, 47, 820-826.	1.5	47
22	Nonalcoholic fatty liver disease is an increasing indication for liver transplantation in the Nordic countries. Liver International, 2018, 38, 2082-2090.	3.9	47
23	Nlrp3 Activation Induces Il-18 Synthesis and Affects the Epithelial Barrier Function in Reactive Cholangiocytes. American Journal of Pathology, 2017, 187, 366-376.	3.8	43
24	Genetic association analysis identifies variants associated with disease progression in primary sclerosing cholangitis. Gut, 2018, 67, 1517-1524.	12.1	42
25	The utility of genome-wide association studies in hepatology. Hepatology, 2010, 51, 1833-1842.	7. 3	41
26	Control of CD1d-restricted antigen presentation and inflammation by sphingomyelin. Nature Immunology, 2019, 20, 1644-1655.	14.5	35
27	Liver Transplantation for Acute Intermittent Porphyria. Liver Transplantation, 2021, 27, 491-501.	2.4	32
28	Update on primary sclerosing cholangitis genetics. Current Opinion in Gastroenterology, 2014, 30, 310-319.	2.3	26
29	Indications and Outcomes in Liver Transplantation in Patients With Primary Sclerosing Cholangitis in Norway. Transplantation Direct, 2015, 1, e39.	1.6	26
30	Refinement of the MHC Risk Map in a Scandinavian Primary Sclerosing Cholangitis Population. PLoS ONE, 2014, 9, e114486.	2.5	24
31	Intact CD100–CD72 Interaction Necessary for TCR-Induced T Cell Proliferation. Frontiers in Immunology, 2017, 8, 765.	4.8	21
32	Absence of NLRP3 Inflammasome in Hematopoietic Cells Reduces Adverse Remodeling After Experimental Myocardial Infarction. JACC Basic To Translational Science, 2020, 5, 1210-1224.	4.1	19
33	Analyzing Antigen Recognition by Natural Killer T Cells. Methods in Molecular Biology, 2013, 960, 557-572.	0.9	18
34	Spatial transcriptomics identifies enriched gene expression and cell types in human liver fibrosis. Hepatology Communications, 2022, 6, 2538-2550.	4.3	16
35	Modelling the burden of hepatitis C infection among people who inject drugs in Norway, 1973–2030. BMC Infectious Diseases, 2017, 17, 541.	2.9	14
36	Genome-wide association studies - A summary for theclinical gastroenterologist. World Journal of Gastroenterology, 2009, 15, 5377.	3.3	14

#	Article	IF	CITATIONS
37	Mucosalâ€associated invariant Tâ€cell tumor infiltration predicts longâ€term survival in cholangiocarcinoma. Hepatology, 2022, 75, 1154-1168.	7.3	14
38	Risk of hepatoâ€pancreatoâ€biliary cancer is increased by primary sclerosing cholangitis in patients with inflammatory bowel disease: A populationâ€based cohort study. United European Gastroenterology Journal, 2022, 10, 212-224.	3.8	14
39	HLA variants related to primary sclerosing cholangitis influence rejection after liver transplantation. World Journal of Gastroenterology, 2014, 20, 3986.	3.3	13
40	IL13Rα2 expression identifies tissueâ€resident ILâ€22â€producing PLZF ⁺ innate TÂcells in the huma liver. European Journal of Immunology, 2018, 48, 1329-1335.	n 2.9	13
41	Establishment of a surgical bile duct injection technique giving direct access to the bile ducts for studies of the murine biliary tree. American Journal of Physiology - Renal Physiology, 2018, 314, G349-G359.	3.4	11
42	The role of natural killer T cells in a mouse model with spontaneous bile duct inflammation. Physiological Reports, 2017, 5, e13117.	1.7	10
43	Thoracic Epidural Analgesia for Postoperative Pain Management in Liver Transplantation: A 10-year Study on 685 Liver Transplant Recipients. Transplantation Direct, 2021, 7, e648.	1.6	10
44	Agingâ€Related Expression of Twinfilinâ€1 Regulates Cholangiocyte Biological Response to Injury. Hepatology, 2019, 70, 883-898.	7.3	9
45	Bile from Patients with Primary Sclerosing Cholangitis Contains Mucosal-Associated Invariant T-Cell Antigens. American Journal of Pathology, 2022, 192, 629-641.	3.8	9
46	A heterozygous germline CD100 mutation in a family with primary sclerosing cholangitis. Science Translational Medicine, 2021, 13 , .	12.4	8
47	C77G in PTPRC (CD45) is no risk allele for ovarian cancer, but associated with less aggressive disease. PLoS ONE, 2017, 12, e0182030.	2.5	8
48	Investigation of cholangiocarcinoma associated <i>NKG2D</i> polymorphisms in colorectal carcinoma. International Journal of Cancer, 2008, 123, 241-242.	5.1	4
49	Genetic markers associated with long-term cardiovascular outcome in kidney transplant recipients. American Journal of Transplantation, 2019, 19, 1444-1451.	4.7	4
50	Liver TX for hepatitis C cirrhosis in a low prevalence population: Risk factors and status at evaluation. Scandinavian Journal of Gastroenterology, 2006, 41, 592-596.	1.5	3
51	Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for pseudomyxoma peritonei in a liver-transplanted patient: a case report. World Journal of Surgical Oncology, 2018, 16, 180.	1.9	2
52	The Role of Natural Killer Cells in Nonalcoholic Steatohepatitis: An Ongoing Debate. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 348-349.	4.5	2
53	Prognostic biomarkers and surrogate end points in <scp>PSC</scp> . Liver International, 2016, 36, 1748-1751.	3.9	1
54	Impact of delayed type hypersensitivity arthritis on development of heart failure by aortic constriction in mice. PLoS ONE, 2022, 17, e0262821.	2.5	1