Tarik Regad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9109911/publications.pdf

Version: 2024-02-01

			394286	5	501076	
	32	2,235	19		28	
	papers	citations	h-index		g-index	
ĺ						
	26	26	26		2072	
	36	36	36		3973	
	all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	MiR-423-5p prevents MALAT1-mediated proliferation and metastasis in prostate cancer. Journal of Experimental and Clinical Cancer Research, 2022, 41, 20.	3.5	25
2	Long non-coding RNAs in cancer stem cells. Translational Oncology, 2021, 14, 101134.	1.7	25
3	\hat{l}^2 2-AR blockade potentiates MEK1/2 inhibitor effect on HNSCC by regulating the Nrf2-mediated defense mechanism. Cell Death and Disease, 2020, 11, 850.	2.7	14
4	Cancer Stem Cells and Targeting Strategies. Cells, 2019, 8, 926.	1.8	128
5	PYK2 promotes HER2-positive breast cancer invasion. Journal of Experimental and Clinical Cancer Research, 2019, 38, 210.	3.5	20
6	Glucose-6-phosphate dehydrogenase blockade potentiates tyrosine kinase inhibitor effect on breast cancer cells through autophagy perturbation. Journal of Experimental and Clinical Cancer Research, 2019, 38, 160.	3.5	59
7	Abstract B152: Generation of monoclonal antibodies against a newly identified target for invasive prostate cancer and their use in the development of an antibody-based targeting therapy. , 2019, , .		О
8	MTSS1 and SCAMP1 cooperate to prevent invasion in breast cancer. Cell Death and Disease, 2018, 9, 344.	2.7	37
9	Generation of In Vitro Model of Epithelial Mesenchymal Transition (EMT) Via the Expression of a Cytoplasmic Mutant Form of Promylocytic Leukemia Protein (PML). Methods in Molecular Biology, 2018, 1692, 129-138.	0.4	1
10	Identification and Isolation of Cancer Stem Cells Using NANOG-EGFP Reporter System. Methods in Molecular Biology, 2018, 1692, 139-148.	0.4	8
11	HDAC2 depletion promotes osteosarcoma's stemness both in vitro and in vivo: a study on a putative new target for CSCs directed therapy. Journal of Experimental and Clinical Cancer Research, 2018, 37, 296.	3.5	49
12	A new inhibitor of glucose-6-phosphate dehydrogenase blocks pentose phosphate pathway and suppresses malignant proliferation and metastasis in vivo. Cell Death and Disease, 2018, 9, 572.	2.7	138
13	Identification and characterisation of NANOG+/ OCT-4high/SOX2+ doxorubicin-resistant stem-like cells from transformed trophoblastic cell lines. Oncotarget, 2018, 9, 7054-7065.	0.8	11
14	Concise Review: Cancer Cells, Cancer Stem Cells, and Mesenchymal Stem Cells: Influence in Cancer Development. Stem Cells Translational Medicine, 2017, 6, 2115-2125.	1.6	232
15	Targeting cellular pathways in glioblastoma multiforme. Signal Transduction and Targeted Therapy, 2017, 2, 17040.	7.1	233
16	Tissue-specific cancer stem cells: reality or a mirage?. Translational Medicine Reports, 2017, 1, .	0.8	6
17	A Promyelocytic Leukemia Protein–Thrombospondin-2 Axis and the Risk of Relapse in Neuroblastoma. Clinical Cancer Research, 2016, 22, 3398-3409.	3.2	8
18	Cytoplasmic PML promotes TGF-β-associated epithelial–mesenchymal transition and invasion in prostate cancer. Oncogene, 2016, 35, 3465-3475.	2.6	45

#	Article	IF	CITATIONS
19	Targeting RTK Signaling Pathways in Cancer. Cancers, 2015, 7, 1758-1784.	1.7	290
20	The helicase HAGE prevents interferon-α-induced PML expression in ABCB5+ malignant melanoma-initiating cells by promoting the expression of SOCS1. Cell Death and Disease, 2014, 5, e1061-e1061.	2.7	16
21	Cancer stem cells (CSCs) and epithelial-to-mesenchymal transition (EMT): Tumor cell plasticity challenges immunotherapy., 2014,, 401-414.		0
22	Molecular and cellular pathogenesis of melanoma initiation and progression. Cellular and Molecular Life Sciences, 2013, 70, 4055-4065.	2.4	51
23	The Helicase HAGE Expressed by Malignant Melanoma-Initiating Cells Is Required for Tumor Cell Proliferation in Vivo. Journal of Biological Chemistry, 2012, 287, 13633-13643.	1.6	31
24	Abstract LB-153: The helicase antigen (HAGE) promotes tumor cell proliferation via up-regulation of Ras protein signalling , 2012 , , .		0
25	SUMOylation Promotes PML Degradation during Encephalomyocarditis Virus Infection. Journal of Virology, 2010, 84, 11634-11645.	1.5	55
26	The tumor suppressor Pml regulates cell fate in the developing neocortex. Nature Neuroscience, 2009, 12, 132-140.	7.1	108
27	239 PML is cleaved and degraded in EMCV-infected cells. Cytokine, 2008, 43, 296.	1.4	O
28	The neural progenitor-specifying activity of FoxG1 is antagonistically regulated by CKI and FGF. Nature Cell Biology, 2007, 9, 531-540.	4.6	87
29	Rabies virus P and small P products interact directly with PML and reorganize PML nuclear bodies. Oncogene, 2002, 21, 7957-7970.	2.6	139
30	PML, un nouvel intermédiaire de l'effet antiviral de l'interféron. Medecine/Sciences, 2002, 18, 25-27.	0.0	2
31	PML mediates the interferon-induced antiviral state against a complex retrovirus via its association with the viral transactivator. EMBO Journal, 2001, 20, 3495-3505.	3.5	150
32	Role and fate of PML nuclear bodies in response to interferon and viral infections. Oncogene, 2001, 20, 7274-7286.	2.6	266