
Vincent Cattoir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9109078/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neutrophil function and bactericidal activity against <i>Staphylococcus aureus</i> after cardiac surgery with cardiopulmonary bypass. Journal of Leukocyte Biology, 2022, 111, 867-876.	3.3	2
2	The multifaceted lifestyle of enterococci: genetic diversity, ecology and risks for public health. Current Opinion in Microbiology, 2022, 65, 73-80.	5.1	32
3	High-level carbapenem tolerance requires antibiotic-induced outer membrane modifications. PLoS Pathogens, 2022, 18, e1010307.	4.7	18
4	Optimization of the rapid carbapenem inactivation method for use with AmpC hyperproducers—authors' response. Journal of Antimicrobial Chemotherapy, 2022, 77, 1210-1211.	3.0	0
5	Evaluation of CHROMagarâ,,¢ LIN-R for the Screening of Linezolid Resistant Staphylococci from Positive Blood Cultures and Nasal Swab Screening Samples. Antibiotics, 2022, 11, 313.	3.7	1
6	Beneficial effects of citrulline enteral administration on sepsis-induced T cell mitochondrial dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	13
7	High Prevalence of OXA-23 Carbapenemase-Producing <i>Proteus mirabilis</i> among Amoxicillin-Clavulanate-Resistant Isolates in France. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0198321.	3.2	8
8	Antimicrobial Resistance in Enterobacterales Recovered from Urinary Tract Infections in France. Pathogens, 2022, 11, 356.	2.8	11
9	Efficient and Quality-Optimized Metagenomic Pipeline Designed for Taxonomic Classification in Routine Microbiological Clinical Tests. Microorganisms, 2022, 10, 711.	3.6	9
10	The Association Between Antibiotic Use and Outcome Among Metastatic Melanoma Patients Receiving Immunotherapy. Journal of the National Cancer Institute, 2022, , .	6.3	10
11	Small RNA-mediated regulation of the tet(M) resistance gene expression in Enterococcus faecium. Research in Microbiology, 2022, 173, 103941.	2.1	3
12	Development and validation of a lateral flow immunoassay for rapid detection of VanA-producing enterococci. Journal of Antimicrobial Chemotherapy, 2021, 76, 146-151.	3.0	9
13	Streptogramins for the treatment of infections caused by Gram-positive pathogens. Expert Review of Anti-Infective Therapy, 2021, 19, 587-599.	4.4	10
14	Clinical relevance and antimicrobial susceptibility profile of the unknown human pathogen Corynebacterium aurimucosum. Journal of Medical Microbiology, 2021, 70, .	1.8	3
15	Distinct expression profiles of regulatory RNAs in the response to biocides in Staphylococcus aureus and Enterococcus faecium. Scientific Reports, 2021, 11, 6892.	3.3	8
16	Genetic features of the <i>poxtA</i> linezolid resistance gene in human enterococci from France. Journal of Antimicrobial Chemotherapy, 2021, 76, 1978-1985.	3.0	14
17	Optimization of the rapid carbapenem inactivation method for use with AmpC hyperproducers. Journal of Antimicrobial Chemotherapy, 2021, 76, 2294-2301.	3.0	9
18	Temocillin susceptibility among Enterobacterales strains recovered from blood culture in France. Diagnostic Microbiology and Infectious Disease, 2021, 100, 115368.	1.8	7

VINCENT CATTOIR

#	Article	IF	CITATIONS
19	In Vitro Antimicrobial Susceptibility Profiles of Gram-Positive Anaerobic Cocci Responsible for Human Invasive Infections. Microorganisms, 2021, 9, 1665.	3.6	11
20	Rapid Detection of VanA/B-Producing Vancomycin-Resistant Enterococci Using Lateral Flow Immunoassay. Diagnostics, 2021, 11, 1805.	2.6	5
21	Multicentric evaluation of BioFire FilmArray Pneumonia Panel for rapid bacteriological documentation of pneumonia. Clinical Microbiology and Infection, 2021, 27, 1308-1314.	6.0	41
22	Activity of the combination of colistin and fosfomycin against NDM-1-producing <i>Escherichia coli</i> with variable levels of susceptibility to colistin and fosfomycin in a murine model of peritonitis. Journal of Antimicrobial Chemotherapy, 2021, 77, 155-163.	3.0	3
23	The Regulatory RNA ern0160 Confers a Potential Selective Advantage to Enterococcus faecium for Intestinal Colonization. Frontiers in Microbiology, 2021, 12, 757227.	3.5	1
24	Novel Chromosomal Mutations Responsible for Fosfomycin Resistance in Escherichia coli. Frontiers in Microbiology, 2020, 11, 575031.	3.5	10
25	Landscape of in vivo Fitness-Associated Genes of Enterobacter cloacae Complex. Frontiers in Microbiology, 2020, 11, 1609.	3.5	8
26	Avrilella dinanensis gen. nov., sp. nov., a novel bacterium of the family Flavobacteriaceae isolated from human blood. Systematic and Applied Microbiology, 2020, 43, 126124.	2.8	2
27	Unexpected Cell Wall Alteration-Mediated Bactericidal Activity of the Antifungal Caspofungin against Vancomycin-Resistant Enterococcus faecium. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	6
28	<i>ramR</i> Deletion in an Enterobacter hormaechei Isolate as a Consequence of Therapeutic Failure of Key Antibiotics in a Long-Term Hospitalized Patient. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	13
29	In vitro activity of eravacycline and mechanisms of resistance in enterococci. International Journal of Antimicrobial Agents, 2020, 56, 106215.	2.5	6
30	ResFinder 4.0 for predictions of phenotypes from genotypes. Journal of Antimicrobial Chemotherapy, 2020, 75, 3491-3500.	3.0	1,523
31	Cross-reactivity between tumor MHC class l–restricted antigens and an enterococcal bacteriophage. Science, 2020, 369, 936-942.	12.6	217
32	Analysis of Paradoxical Efficacy of Carbapenems against Carbapenemase-Producing Escherichia coli in a Murine Model of Lethal Peritonitis. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	7
33	Molecular basis of macrolide-lincosamide-streptogramin (MLS) resistance in Finegoldia magna clinical isolates. Anaerobe, 2020, 64, 102220.	2.1	6
34	Molecular and functional analysis of the novel cfr(D) linezolid resistance gene identified in Enterococcus faecium. Journal of Antimicrobial Chemotherapy, 2020, 75, 1699-1703.	3.0	33
35	Performance of commercial methods for linezolid susceptibility testing of Enterococcus faecium and Enterococcus faecalis. Journal of Antimicrobial Chemotherapy, 2020, 75, 2587-2593.	3.0	8
36	Helcococcus kunzii methyltransferase Erm(47) responsible for MLSB resistance is induced by diverse ribosome-targeting antibiotics. Journal of Antimicrobial Chemotherapy, 2019, 75, 371-378.	3.0	0

VINCENT CATTOIR

#	Article	IF	CITATIONS
37	In vitro bactericidal activity of amoxicillin combined with different cephalosporins against endocarditis-associated Enterococcus faecalis clinical isolates. Journal of Antimicrobial Chemotherapy, 2019, 74, 3511-3514.	3.0	11
38	Unexpected Activity of Oral Fosfomycin against Resistant Strains of Escherichia coli in Murine Pyelonephritis. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	7
39	Future Antibacterial Strategies: From Basic Concepts to Clinical Challenges. Journal of Infectious Diseases, 2019, 220, 350-360.	4.0	87
40	Emergence of optrA-mediated linezolid resistance in enterococci from France, 2006–16. Journal of Antimicrobial Chemotherapy, 2019, 74, 1469-1472.	3.0	52
41	Colistin heteroresistance in <i>Enterobacter cloacae</i> is regulated by PhoPQâ€dependent 4â€aminoâ€4â€deoxyâ€ <scp>l</scp> â€arabinose addition to lipid A. Molecular Microbiology, 2019, 111, 1604-1	6ff.	52
42	The Transcriptional Repressor SmvR Is Important for Decreased Chlorhexidine Susceptibility in Enterobacter cloacae Complex. Antimicrobial Agents and Chemotherapy, 2019, 64, .	3.2	7
43	In vitro activity of novel anti-MRSA cephalosporins and comparator antimicrobial agents against staphylococci involved in prosthetic joint infections. Journal of Global Antimicrobial Resistance, 2018, 13, 221-225.	2.2	13
44	Genetic characterization of a VanG-type vancomycin-resistant Enterococcus faecium clinical isolate. Journal of Antimicrobial Chemotherapy, 2018, 73, 852-855.	3.0	14
45	Ceftriaxone promotes the emergence of AmpC-overproducing Enterobacteriaceae in gut microbiota from hospitalized patients. European Journal of Clinical Microbiology and Infectious Diseases, 2018, 37, 417-421.	2.9	23
46	Bacterial Adaptation to Antibiotics through Regulatory RNAs. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	61
47	Update on prevalence and mechanisms of resistance to linezolid, tigecycline and daptomycin in enterococci in Europe: Towards a common nomenclature. Drug Resistance Updates, 2018, 40, 25-39.	14.4	165
48	How is fosfomycin resistance developed in <i>Escherichia coli</i> ?. Future Microbiology, 2018, 13, 1693-1696.	2.0	23
49	Phage Morons Play an Important Role in Pseudomonas aeruginosa Phenotypes. Journal of Bacteriology, 2018, 200, .	2.2	53
50	<i>In Vitro</i> Activity of Ceftolozane-Tazobactam against Enterobacter cloacae Complex Clinical Isolates with Different β-Lactam Resistance Phenotypes. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	15
51	Subinhibitory Concentrations of Ciprofloxacin Enhance Antimicrobial Resistance and Pathogenicity of Enterococcus faecium. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	42
52	Small RNAs in vancomycin-resistant Enterococcus faecium involved in daptomycin response and resistance. Scientific Reports, 2017, 7, 11067.	3.3	35
53	Sequential steps of daptomycin resistance in <i>Enterococcus faecium</i> and reversion to hypersusceptibility through IS-mediated inactivation of the <i>liaFSR</i> operon. Journal of Antimicrobial Chemotherapy, 2016, 71, 2793-2797.	3.0	14
54	Landscape of Resistance-Nodulation-Cell Division (RND)-Type Efflux Pumps in Enterobacter cloacae Complex. Antimicrobial Agents and Chemotherapy, 2016, 60, 2373-2382.	3.2	45

VINCENT CATTOIR

#	Article	IF	CITATIONS
55	A penicillin-binding protein inhibits selection of colistin-resistant, lipooligosaccharide-deficient <i>Acinetobacter baumannii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6228-E6237.	7.1	114
56	Enterococcus hirae and Barnesiella intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects. Immunity, 2016, 45, 931-943.	14.3	645
57	Cluster-dependent colistin hetero-resistance in <i>Enterobacter cloacae</i> complex. Journal of Antimicrobial Chemotherapy, 2016, 71, 3058-3061.	3.0	69
58	Novel chromosome-encoded <i>erm</i> (47) determinant responsible for constitutive MLS _B resistance in <i>Helcococcus kunzii</i> . Journal of Antimicrobial Chemotherapy, 2016, 71, 3046-3049.	3.0	3
59	Identification and Clinical Significance of Helcococcus kunzii in Human Samples. Journal of Clinical Microbiology, 2015, 53, 2703-2705.	3.9	12
60	Fitness cost of antibiotic susceptibility during bacterial infection. Science Translational Medicine, 2015, 7, 297ra114.	12.4	122
61	Complex Regulation Pathways of AmpC-Mediated β-Lactam Resistance in Enterobacter cloacae Complex. Antimicrobial Agents and Chemotherapy, 2015, 59, 7753-7761.	3.2	88
62	Genomic Analysis of Reduced Susceptibility to Tigecycline in Enterococcus faecium. Antimicrobial Agents and Chemotherapy, 2015, 59, 239-244.	3.2	52
63	Antibiotic resistance in <i>Enterococcus faecium</i> clinical isolates. Expert Review of Anti-Infective Therapy, 2014, 12, 239-248.	4.4	81
64	Erm(X)-mediated resistance to macrolides, lincosamides and streptogramins in Actinobaculum schaalii. Journal of Antimicrobial Chemotherapy, 2014, 69, 2056-2060.	3.0	21
65	Twenty-five years of shared life with vancomycin-resistant enterococci: is it time to divorce?. Journal of Antimicrobial Chemotherapy, 2013, 68, 731-742.	3.0	190
66	Genetic Basis for <i>In Vitro</i> and <i>In Vivo</i> Resistance to Lincosamides, Streptogramins A, and Pleuromutilins (LS _A P Phenotype) in Enterococcus faecium. Antimicrobial Agents and Chemotherapy, 2013, 57, 4463-4469.	3.2	47
67	AsrR Is an Oxidative Stress Sensing Regulator Modulating Enterococcus faecium Opportunistic Traits, Antimicrobial Resistance, and Pathogenicity. PLoS Pathogens, 2012, 8, e1002834.	4.7	70
68	Microbiological investigation and clinical significance of Corynebacterium spp. in respiratory specimens. Diagnostic Microbiology and Infectious Disease, 2012, 74, 236-241.	1.8	35
69	Comparison of four methods, including semi-automated rep-PCR, for the typing of vancomycin-resistant Enterococcus faecium. Journal of Microbiological Methods, 2011, 84, 74-80.	1.6	25
70	<scp>d</scp> -Ala- <scp>d</scp> -Ser VanN-Type Transferable Vancomycin Resistance in Enterococcus faecium. Antimicrobial Agents and Chemotherapy, 2011, 55, 4606-4612.	3.2	144
71	Emergence of a Streptococcus pneumoniae isolate resistant to streptogramins by mutation in ribosomal protein L22 during pristinamycin therapy of pneumococcal pneumonia. Journal of Antimicrobial Chemotherapy, 2007, 59, 1010-1012.	3.0	11
72	Bacterial Identification, Clinical Significance, and Antimicrobial Susceptibilities of Acinetobacter ursingii and Acinetobacter schindleri , Two Frequently Misidentified Opportunistic Pathogens. Journal of Clinical Microbiology, 2006, 44, 4471-4478.	3.9	113