
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9108807/publications.pdf Version: 2024-02-01

Μλήξεη Δυλνό

#	Article	IF	CITATIONS
1	Eucriteâ€ŧype achondrites: Petrology and oxygen isotope compositions ^{â€} . Meteoritics and Planetary Science, 2022, 57, 484-526.	1.6	9
2	Ancient and recent collisions revealed by phosphate minerals in the Chelyabinsk meteorite. Communications Earth & Environment, 2022, 3, .	6.8	2
3	Isotopic evidence for pallasite formation by impact mixing of olivine and metal during the first 10 million years of the Solar System. , 2022, 1, .		8
4	Magmatic chlorine isotope fractionation recorded in apatite from Chang'e-5 basalts. Earth and Planetary Science Letters, 2022, 591, 117636.	4.4	14
5	The shocking state of apatite and merrillite in shergottite Northwest Africa 5298 and extreme nanoscale chlorine isotope variability revealed by atom probe tomography. Geochimica Et Cosmochimica Acta, 2021, 293, 422-437.	3.9	13
6	A deuterium-poor water reservoir in the asteroid 4 Vesta and the inner solar system. Geochimica Et Cosmochimica Acta, 2021, 297, 203-219.	3.9	19
7	The lunar Dhofar 1436 meteorite: ⁴⁰ Arâ€ ³⁹ Ar chronology and volatiles, revealed by stepwise combustion and crushing methods. Meteoritics and Planetary Science, 2021, 56, 455-481.	1.6	3
8	Microtextures in the Chelyabinsk impact breccia reveal the history of Phosphorusâ€Olivineâ€Assemblages in chondrites. Meteoritics and Planetary Science, 2021, 56, 742-766.	1.6	5
9	Lunar meteorite Northwest Africa 11962: A regolith breccia containing records of titaniumâ€rich lunar volcanism and the high alkali suite. Meteoritics and Planetary Science, 2021, 56, 971-991.	1.6	3
10	Lunar samples record an impact 4.2 billion years ago that may have formed the Serenitatis Basin. Communications Earth & Environment, 2021, 2, .	6.8	9
11	Exploring relationships between shock-induced microstructures and H2O and Cl in apatite grains from eucrite meteorites. Geochimica Et Cosmochimica Acta, 2021, 302, 120-140.	3.9	7
12	The Ca isotope composition of mare basalts as a probe into the heterogeneous lunar mantle. Earth and Planetary Science Letters, 2021, 570, 117079.	4.4	11
13	Hydrogen reduction of lunar samples in a static system for a water production demonstration on the Moon. Planetary and Space Science, 2021, 205, 105287.	1.7	13
14	Investigating the microwave heating behaviour of lunar soil simulant JSC-1A at different input powers. Scientific Reports, 2021, 11, 2133.	3.3	21
15	A dry lunar mantle reservoir for young mare basalts of Chang'e-5. Nature, 2021, 600, 49-53.	27.8	91
16	Challenges in the microwave heating of lunar regolith – analysis through the design of a Microwave Heating Demonstrator (MHD) payload. Advances in Space Research, 2021, 69, 751-751.	2.6	4
17	Hydrogen reduction of ilmenite: Towards an in situ resource utilization demonstration on the surface of the Moon. Planetary and Space Science, 2020, 180, 104751.	1.7	17
18	Regions of interest (ROI) for future exploration missions to the lunar South Pole. Planetary and Space Science, 2020, 180, 104750.	1.7	44

#	Article	IF	CITATIONS
19	Feasibility studies for hydrogen reduction of ilmenite in a static system for use as an ISRU demonstration on the lunar surface. Planetary and Space Science, 2020, 180, 104759.	1.7	12
20	Standardizing the reporting of ΔÊ1170 data from high precision oxygen triple-isotope ratio measurements of silicate rocks and minerals. Chemical Geology, 2020, 532, 119332.	3.3	33
21	A quantitative evolved gas analysis for extra-terrestrial samples. Planetary and Space Science, 2020, 181, 104830.	1.7	9
22	Signatures of the post-hydration heating of highly aqueously altered CM carbonaceous chondrites and implications for interpreting asteroid sample returns. Geochimica Et Cosmochimica Acta, 2020, 289, 69-92.	3.9	15
23	Deuterium and ³⁷ Chlorine Rich Fluids on the Surface of Mars: Evidence From the Enriched Basaltic Shergottite Northwest Africa 8657. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006537.	3.6	6
24	Editorial to the Topical Collection: Role of Sample Return in Addressing Major Questions in Planetary Sciences. Space Science Reviews, 2020, 216, 1.	8.1	6
25	The BepiColombo Mercury Imaging X-Ray Spectrometer: Science Goals, Instrument Performance and Operations. Space Science Reviews, 2020, 216, 1.	8.1	36
26	What is the Oxygen Isotope Composition of Venus? The Scientific Case for Sample Return from Earth's "Sister―Planet. Space Science Reviews, 2020, 216, 1.	8.1	9
27	Evidence of extensive lunar crust formation in impact melt sheets 4,330 Myr ago. Nature Astronomy, 2020, 4, 974-978.	10.1	25
28	Exploring the Bimodal Solar System via Sample Return from the Main Asteroid Belt: The Case for Revisiting Ceres. Space Science Reviews, 2020, 216, 59.	8.1	6
29	Multiple early-formed water reservoirs in the interior of Mars. Nature Geoscience, 2020, 13, 260-264.	12.9	43
30	The hydrogen isotopic composition of lunar melt inclusions: An interplay of complex magmatic and secondary processes. Geochimica Et Cosmochimica Acta, 2020, 284, 196-221.	3.9	10
31	Linking asteroids and meteorites to the primordial planetesimal population. Geochimica Et Cosmochimica Acta, 2020, 277, 377-406.	3.9	93
32	Preservation of primordial signatures of water in highly-shocked ancient lunar rocks. Earth and Planetary Science Letters, 2020, 544, 116364.	4.4	12
33	Oxygen Isotopes and Sampling of the Solar System. Space Science Reviews, 2020, 216, 1.	8.1	22
34	The chlorine isotopic composition of the Moon: Insights from melt inclusions. Earth and Planetary Science Letters, 2019, 523, 115715.	4.4	24
35	The timing of basaltic volcanism at the Apollo landing sites. Geochimica Et Cosmochimica Acta, 2019, 266, 29-53.	3.9	40
36	A detailed mineralogical, petrographic, and geochemical study of the highly reduced chondrite, Acfer 370. Meteoritics and Planetary Science, 2019, 54, 2996-3017.	1.6	5

#	Article	IF	CITATIONS
37	An ancient reservoir of volatiles in the Moon sampled by lunar meteorite Northwest Africa 10989. Geochimica Et Cosmochimica Acta, 2019, 266, 163-183.	3.9	12
38	Numerical modelling of the microwave heating behaviour of lunar regolith. Planetary and Space Science, 2019, 179, 104723.	1.7	15
39	H and Cl isotope characteristics of indigenous and late hydrothermal fluids on the differentiated asteroidal parent body of Grave Nunataks 06128. Geochimica Et Cosmochimica Acta, 2019, 266, 529-543.	3.9	14
40	Investigating magmatic processes in the early Solar System using the Cl isotopic systematics of eucrites. Geochimica Et Cosmochimica Acta, 2019, 266, 582-597.	3.9	17
41	The potential science and engineering value of samples delivered to Earth by Mars sample return. Meteoritics and Planetary Science, 2019, 54, S3.	1.6	73
42	Shockâ€induced microtextures in lunar apatite and merrillite. Meteoritics and Planetary Science, 2019, 54, 1262-1282.	1.6	21
43	Constraining the Evolutionary History of the Moon and the Inner Solar System: A Case for New Returned Lunar Samples. Space Science Reviews, 2019, 215, 1.	8.1	41
44	Multiple reservoirs of volatiles in the Moon revealed by the isotopic composition of chlorine in lunar basalts. Geochimica Et Cosmochimica Acta, 2019, 266, 144-162.	3.9	41
45	Petrology and oxygen isotopic composition of large igneous inclusions in ordinary chondrites: Early solar system igneous processes and oxygen reservoirs. Geochimica Et Cosmochimica Acta, 2019, 266, 497-528.	3.9	13
46	Chlorine isotopic compositions of apatite in Apollo 14 rocks: Evidence for widespread vapor-phase metasomatism on the lunar nearsideâ€ãî¼4â€billion years ago. Geochimica Et Cosmochimica Acta, 2018, 230, 46-59.	3.9	39
47	Oxygen isotopic evidence for accretion of Earth's water before a high-energy Moon-forming giant impact. Science Advances, 2018, 4, eaao5928.	10.3	77
48	Ancient volcanism on the Moon: Insights from Pb isotopes in the MIL 13317 and Kalahari 009 lunar meteorites. Earth and Planetary Science Letters, 2018, 502, 84-95.	4.4	34
49	High pressure minerals in the Château-Renard (L6) ordinary chondrite: implications for collisions on its parent body. Scientific Reports, 2018, 8, 9851.	3.3	39
50	Melting and differentiation of early-formed asteroids: The perspective from high precision oxygen isotope studies. Chemie Der Erde, 2017, 77, 1-43.	2.0	132
51	Late movement of basin-edge lobate scarps on Mercury. Icarus, 2017, 288, 226-234.	2.5	16
52	The mineralogy, petrology, and composition of anomalous eucrite Emmaville. Meteoritics and Planetary Science, 2017, 52, 656-668.	1.6	10
53	Origin and Evolution of Water in the Moon's Interior. Annual Review of Earth and Planetary Sciences, 2017, 45, 89-111.	11.0	29
54	Carbon isotopic variation in ureilites: Evidence for an early, volatile-rich Inner Solar System. Earth and Planetary Science Letters, 2017, 478, 143-149.	4.4	22

#	Article	IF	CITATIONS
55	Extra-terrestrial construction processes – Advancements, opportunities and challenges. Advances in Space Research, 2017, 60, 1413-1429.	2.6	61
56	Early degassing of lunar urKREEP by crust-breaching impact(s). Earth and Planetary Science Letters, 2016, 447, 84-94.	4.4	78
57	Characterization of mesostasis regions in lunar basalts: Understanding lateâ€stage melt evolution and its influence on apatite formation. Meteoritics and Planetary Science, 2016, 51, 1555-1575.	1.6	17
58	On the iron isotope composition of Mars and volatile depletion in the terrestrial planets. Earth and Planetary Science Letters, 2016, 449, 360-371.	4.4	39
59	The abundance and isotopic composition of water in eucrites. Meteoritics and Planetary Science, 2016, 51, 1110-1124.	1.6	37
60	Lunar basalt chronology, mantle differentiation and implications for determining the age of the Moon. Earth and Planetary Science Letters, 2016, 451, 149-158.	4.4	60
61	Predominantly non-solar origin of nitrogen in lunar soils. Geochimica Et Cosmochimica Acta, 2016, 193, 36-53.	3.9	16
62	Microwave processing of lunar soil for supporting longer-term surface exploration on the Moon. Space Policy, 2016, 37, 92-96.	1.5	35
63	Mass dependent fractionation of stable chromium isotopes in mare basalts: Implications for the formation and the differentiation of the Moon. Geochimica Et Cosmochimica Acta, 2016, 175, 208-221.	3.9	56
64	An asteroidal origin for water in the Moon. Nature Communications, 2016, 7, 11684.	12.8	68
65	Geologic history of Martian regolith breccia Northwest Africa 7034: Evidence for hydrothermal activity and lithologic diversity in the Martian crust. Journal of Geophysical Research E: Planets, 2016, 121, 2120-2149.	3.6	65
66	Investigating the History of Magmatic Volatiles in the Moon Using NanoSIMS. Microscopy and Microanalysis, 2016, 22, 1804-1805.	0.4	1
67	Water in evolved lunar rocks: Evidence for multiple reservoirs. Geochimica Et Cosmochimica Acta, 2016, 188, 244-260.	3.9	45
68	Oxygen isotope and petrological study of silicate inclusions in IIE iron meteorites and their relationship with H chondrites. Geochimica Et Cosmochimica Acta, 2016, 173, 97-113.	3.9	28
69	Combined investigation of H isotopic compositions and U-Pb chronology of young Martian meteorite Larkman Nunatak 06319. Geochemical Journal, 2016, 50, 363-377.	1.0	9
70	Explosive volcanism in complex impact craters on Mercury and the Moon: Influence of tectonic regime on depth of magmatic intrusion. Earth and Planetary Science Letters, 2015, 431, 164-172.	4.4	26
71	Petrology of igneous clasts in Northwest Africa 7034: Implications for the petrologic diversity of the martian crust. Geochimica Et Cosmochimica Acta, 2015, 157, 56-85.	3.9	105
72	Simultaneous analysis of abundance and isotopic composition of nitrogen, carbon, and noble gases in lunar basalts: Insights into interior and surface processes on the Moon. Icarus, 2015, 255, 3-17.	2.5	29

#	Article	IF	CITATIONS
73	A cone on Mercury: Analysis of a residual central peak encircled by an explosive volcanic vent. Planetary and Space Science, 2015, 108, 108-116.	1.7	8
74	Comment on "The triple oxygen isotope composition of the Earth mantle and understanding Δ17O variations in terrestrial rocks and minerals―by Pack and Herwartz [Earth Planet. Sci. Lett. 390 (2014) 138–145]. Earth and Planetary Science Letters, 2015, 418, 181-183.	4.4	11
75	Geochemistry and oxygen isotope composition of main-group pallasites and olivine-rich clasts in mesosiderites: Implications for the "Great Dunite Shortage―and HED-mesosiderite connection. Geochimica Et Cosmochimica Acta, 2015, 169, 115-136.	3.9	48
76	Experimental investigation of F, Cl, and OH partitioning between apatite and Fe-rich basaltic melt at 1.0–1.2 GPa and 950–1000 °C. American Mineralogist, 2015, 100, 1790-1802.	1.9	112
77	Magmatic volatiles (H, C, N, F, S, Cl) in the lunar mantle, crust, and regolith: Abundances, distributions, processes, and reservoirs. American Mineralogist, 2015, 100, 1668-1707.	1.9	160
78	Mechanisms of explosive volcanism on Mercury: Implications from its global distribution and morphology. Journal of Geophysical Research E: Planets, 2014, 119, 2239-2254.	3.6	54
79	Lunar Exploration. , 2014, , 555-579.		13
80	Understanding the origin and evolution of water in the Moon through lunar sample studies. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130254.	3.4	35
81	Apatites in lunar KREEP basalts: The missing link to understanding the H isotope systematics of the Moon. Geology, 2014, 42, 363-366.	4.4	98
82	Analyzing Moon Rocks. Science, 2014, 344, 365-366.	12.6	5
83	H and Cl isotope systematics of apatite in brecciated lunar meteorites Northwest Africa 4472, Northwest Africa 773, Sayh al Uhaymir 169, and Kalahari 009. Meteoritics and Planetary Science, 2014, 49, 2266-2289.	1.6	62
84	Trace-element modelling of mare basalt parental melts: Implications for a heterogeneous lunar mantle. Geochimica Et Cosmochimica Acta, 2014, 134, 289-316.	3.9	61
85	A water–ice rich minor body from the early Solar System: The CR chondrite parent asteroid. Earth and Planetary Science Letters, 2014, 407, 48-60.	4.4	50
86	The origin of water in the primitive Moon as revealed by the lunar highlands samples. Earth and Planetary Science Letters, 2014, 390, 244-252.	4.4	118
87	Corrigendum to "Late delivery of chondritic hydrogen into the lunar mantle: Insights from mare basalts―[Earth Planet. Sci. Lett. 361 (2013) 480–486]. Earth and Planetary Science Letters, 2014, 389, 105.	4.4	1
88	The oxygen isotope composition of diogenites: Evidence for early global melting on a single, compositionally diverse, HED parent body. Earth and Planetary Science Letters, 2014, 390, 165-174.	4.4	50
89	Dust from collisions: A way to probe the composition of exo-planets?. Icarus, 2014, 239, 1-14.	2.5	15
90	Hollows on Mercury: Materials and mechanisms involved in their formation. Icarus, 2014, 229, 221-235.	2.5	66

#	Article	IF	CITATIONS
91	Longâ€lived explosive volcanism on Mercury. Geophysical Research Letters, 2014, 41, 6084-6092.	4.0	74
92	NanoSIMS Pb/Pb dating of tranquillityite in high-Ti lunar basalts: Implications for the chronology of high-Ti volcanism on the Moon. American Mineralogist, 2013, 98, 1477-1486.	1.9	9
93	Late delivery of chondritic hydrogen into the lunar mantle: Insights from mare basalts. Earth and Planetary Science Letters, 2013, 361, 480-486.	4.4	67
94	Silicon isotope variations in the inner solar system: Implications for planetary formation, differentiation and composition. Geochimica Et Cosmochimica Acta, 2013, 121, 67-83.	3.9	80
95	Accurate and precise measurements of the D/H ratio and hydroxyl content in lunar apatites using NanoSIMS. Chemical Geology, 2013, 337-338, 48-55.	3.3	90
96	The abundance, distribution, and isotopic composition of Hydrogen in the Moon as revealed by basaltic lunar samples: Implications for the volatile inventory of the Moon. Geochimica Et Cosmochimica Acta, 2013, 122, 58-74.	3.9	127
97	Quantifying noble gas contamination during terrestrial alteration in Martian meteorites from Antarctica. Meteoritics and Planetary Science, 2013, 48, 929-954.	1.6	9
98	Stable isotope analysis of carbon and nitrogen in angrites. Meteoritics and Planetary Science, 2013, 48, 1590-1606.	1.6	12
99	Back to the Moon: The scientific rationale for resuming lunar surface exploration. Planetary and Space Science, 2012, 74, 3-14.	1.7	119
100	A brief review of chemical and mineralogical resources on the Moon and likely initial in situ resource utilization (ISRU) applications. Planetary and Space Science, 2012, 74, 42-48.	1.7	200
101	Geology, geochemistry, and geophysics of the Moon: Status of current understanding. Planetary and Space Science, 2012, 74, 15-41.	1.7	104
102	Performance of new generation swept charge devices for lunar x-ray spectroscopy on Chandrayaan-2. , 2012, , .		3
103	Late Accretion on the Earliest Planetesimals Revealed by the Highly Siderophile Elements. Science, 2012, 336, 72-75.	12.6	95
104	Lunar Net—a proposal in response to an ESA M3 call in 2010 for a medium sized mission. Experimental Astronomy, 2012, 33, 587-644.	3.7	15
105	Maribo—A new CM fall from Denmark. Meteoritics and Planetary Science, 2012, 47, 30-50.	1.6	71
106	Mid-infrared spectra of differentiated meteorites (achondrites): Comparison with astronomical observations of dust in protoplanetary and debris disks. Icarus, 2012, 219, 48-56.	2.5	10
107	The Chandrayaan-1 X-ray Spectrometer: First results. Planetary and Space Science, 2012, 60, 217-228.	1.7	28
108	New Ar–Ar ages of southern Indian kimberlites and a lamproite and their geochemical evolution. Precambrian Research, 2011, 189, 91-103.	2.7	37

#	Article	IF	CITATIONS
109	Thermal history of Northwest Africa 5073––A coarseâ€grained Stannernâ€trend eucrite containing cmâ€sized pyroxenes and large zircon grains. Meteoritics and Planetary Science, 2011, 46, 1754-1773.	1.6	38
110	Carbonate xenoliths hosted by the Mesoproterozoic Siddanpalli Kimberlite Cluster (Eastern Dharwar) Tj ETQqO metallogenesis. International Journal of Earth Sciences, 2010, 99, 1791-1804.	0 0 rgBT /C 1.8	overlock 10 Tf 34
111	Lunar Water: A Brief Review. Earth, Moon and Planets, 2010, 107, 65-73.	0.6	70
112	Mercury's surface and composition to be studied by BepiColombo. Planetary and Space Science, 2010, 58, 21-39.	1.7	31
113	The mercury imaging X-ray spectrometer (MIXS) on bepicolombo. Planetary and Space Science, 2010, 58, 79-95.	1.7	127
114	The oxygen isotope composition, petrology and geochemistry of mare basalts: Evidence for large-scale compositional variation in the lunar mantle. Geochimica Et Cosmochimica Acta, 2010, 74, 6885-6899.	3.9	80
115	The scientific rationale for the C1XS X-ray spectrometer on India's Chandrayaan-1 mission to the moon. Planetary and Space Science, 2009, 57, 725-734.	1.7	30
116	The C1XS X-ray Spectrometer on Chandrayaan-1. Planetary and Space Science, 2009, 57, 717-724.	1.7	54
117	Oxygen isotopic constraints on the origin and parent bodies of eucrites, diogenites, and howardites. Geochimica Et Cosmochimica Acta, 2009, 73, 5835-5853.	3.9	148
118	An Anomalous Basaltic Meteorite from the Innermost Main Belt. Science, 2009, 325, 1525-1527.	12.6	86
119	The Puerto Lápice eucrite. Meteoritics and Planetary Science, 2009, 44, 159-174.	1.6	25
120	Laboratory experiments on the weathering of iron meteorites and carbonaceous chondrites by ironâ€oxidizing bacteria. Meteoritics and Planetary Science, 2009, 44, 233-247.	1.6	35
121	Exploring the Moon: a UK perspective. Astronomy and Geophysics, 2008, 49, 1.09-1.12.	0.2	Ο
122	Uranium–lead systematics of low-Ti basaltic meteorite Dhofar 287A: Affinity to Apollo 15 green glasses. Earth and Planetary Science Letters, 2008, 270, 119-124.	4.4	17
123	The petrology and geochemistry of Miller Range 05035: A new lunar gabbroic meteorite. Geochimica Et Cosmochimica Acta, 2008, 72, 3822-3844.	3.9	58
124	Uranium–lead systematics of phosphates in lunar basaltic regolith breccia, Meteorite Hills 01210. Earth and Planetary Science Letters, 2007, 259, 77-84.	4.4	26
125	Discriminating bacterial from electrochemical corrosion using Fe isotopes. Corrosion Science, 2007, 49, 3759-3764.	6.6	2
126	Cryptomare magmatism 4.35 Gyr ago recorded in lunar meteorite Kalahari 009. Nature, 2007, 450, 849-852.	27.8	104

#	Article	IF	CITATIONS
127	Petrology and geochemistry of LaPaz Icefield 02205: A new unique low-Ti mare-basalt meteorite. Geochimica Et Cosmochimica Acta, 2006, 70, 246-264.	3.9	74
128	Evolved mare basalt magmatism, high Mg/Fe feldspathic crust, chondritic impactors, and the petrogenesis of Antarctic lunar breccia meteorites Meteorite Hills 01210 and Pecora Escarpment 02007. Geochimica Et Cosmochimica Acta, 2006, 70, 5957-5989.	3.9	58
129	Searching for signatures of life on Mars: an Fe-isotope perspective. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 1715-1720.	4.0	25
130	Widespread magma oceans on asteroidal bodies in the early Solar System. Nature, 2005, 435, 916-918.	27.8	278
131	Pinpointing the Source of a Lunar Meteorite: Implications for the Evolution of the Moon. Science, 2004, 305, 657-659.	12.6	140
132	Space weathering on airless planetary bodies: Clues from the lunar mineral hapkeite. Proceedings of the United States of America, 2004, 101, 6847-6851.	7.1	102
133	Nature of diamonds in Yakutian eclogites: views from eclogite tomography and mineral inclusions in diamonds. Lithos, 2004, 77, 333-348.	1.4	67
134	Multiple-mineral inclusions in diamonds from the Snap Lake/King Lake kimberlite dike, Slave craton, Canada: a trace-element perspective. Lithos, 2004, 77, 69-81.	1.4	32
135	Multi-stage metasomatism of diamondiferous eclogite xenoliths from the Udachnaya kimberlite pipe, Yakutia, Siberia. Contributions To Mineralogy and Petrology, 2004, 146, 696-714.	3.1	83
136	Diamonds: time capsules from the Siberian Mantle. Chemie Der Erde, 2004, 64, 1-74.	2.0	129
137	Petrogenesis of lunar highlands meteorites: Dhofar 025, Dhofar 081, Dar al Gani 262, and Dar al Gani 400. Meteoritics and Planetary Science, 2004, 39, 503-529.	1.6	52
138	Petrogenesis of group?A eclogites and websterites: evidence from the Obnazhennaya kimberlite, Yakutia. Contributions To Mineralogy and Petrology, 2003, 145, 424-443.	3.1	84
139	KREEPy lunar meteorite Dhofar 287A: A new lunar mare basalt. Meteoritics and Planetary Science, 2003, 38, 485-499.	1.6	44
140	Lunar regolith breccia Dhofar 287B: A record of lunar volcanism. Meteoritics and Planetary Science, 2003, 38, 501-514.	1.6	15
141	Petrogenesis of lunar meteorite EET 96008. Geochimica Et Cosmochimica Acta, 2003, 67, 3499-3518.	3.9	50
142	Early Proterozoic Melt Generation Processes beneath the Intra-cratonic Cuddapah Basin, Southern India. Journal of Petrology, 2003, 44, 2139-2171.	2.8	149
143	The significance of mineral inclusions in large diamonds from Yakutia, Russia. American Mineralogist, 2003, 88, 912-920.	1.9	41