Olivier Van Aken

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9108084/publications.pdf

Version: 2024-02-01

52 4,792 34 51
papers citations h-index g-index

53 53 53 4982 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Purification of Leaf Mitochondria from Arabidopsis thaliana Using Percoll Density Gradients. Methods in Molecular Biology, 2022, 2363, 1-12.	0.9	4
2	The mitochondrial <scp>LYR</scp> protein <scp>SDHAF1</scp> is required for succinate dehydrogenase activity in Arabidopsis. Plant Journal, 2022, 110, 499-512.	5.7	6
3	Evaluation of Antibiotic-Based Selection Methods for Camelina sativa Stable Transformants. Cells, 2022, 11, 1068.	4.1	3
4	Carbon starvation, senescence and specific mitochondrial stresses, but not nitrogen starvation and general stresses, are major triggers for mitophagy in Arabidopsis. Autophagy, 2022, 18, 2894-2912.	9.1	12
5	Touch signaling and thigmomorphogenesis are regulated by complementary CAMTA3- and JA-dependent pathways. Science Advances, 2022, 8, .	10.3	22
6	Mitochondrial redox systems as central hubs in plant metabolism and signaling. Plant Physiology, 2021, 186, 36-52.	4.8	56
7	Increased expression of <i>ANAC017</i> primes for accelerated senescence. Plant Physiology, 2021, 186, 2205-2221.	4.8	15
8	Plant mitochondria – past, present and future. Plant Journal, 2021, 108, 912-959.	5.7	94
9	Development of a real-time quantitative PCR method for detection and quantification of Prevotella copri. BMC Microbiology, 2021, 21, 23.	3.3	6
10	The transcription factor ANAC017 is a key regulator of mitochondrial proteotoxic stress responses in plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190411.	4.0	22
11	Joint inhibition of mitochondrial complex IV and alternative oxidase by genetic or chemical means represses chloroplast transcription in <i>Arabidopsis</i> . Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190409.	4.0	13
12	Retrograde signals from endosymbiotic organelles: a common control principle in eukaryotic cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190396.	4.0	24
13	Mitochondrial unfolded protein-related responses across kingdoms: similar problems, different regulators. Mitochondrion, 2020, 53, 166-177.	3.4	41
14	Multiparametric realâ€time sensing of cytosolic physiology links hypoxia responses to mitochondrial electron transport. New Phytologist, 2019, 224, 1668-1684.	7.3	69
15	A MYC2/MYC3/MYC4-dependent transcription factor network regulates water spray-responsive gene expression and jasmonate levels. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23345-23356.	7.1	95
16	Neofunctionalization of Mitochondrial Proteins and Incorporation into Signaling Networks in Plants. Molecular Biology and Evolution, 2019, 36, 974-989.	8.9	17
17	Globular structures in roots accumulate phosphorus to extremely high concentrations following phosphorus addition. Plant, Cell and Environment, 2019, 42, 1987-2002.	5.7	9
18	Studying Retrograde Signaling in Plants. Methods in Molecular Biology, 2018, 1743, 73-85.	0.9	9

#	Article	IF	CITATIONS
19	Mitochondrial Energy Signaling and Its Role in the Low-Oxygen Stress Response of Plants. Plant Physiology, 2018, 176, 1156-1170.	4.8	79
20	Mitophagy: A Mechanism for Plant Growth and Survival. Trends in Plant Science, 2018, 23, 434-450.	8.8	76
21	An Assembly Factor Promotes Assembly of Flavinated SDH1 into the Succinate Dehydrogenase Complex. Plant Physiology, 2018, 177, 1439-1452.	4.8	17
22	Salicylic Acid-Dependent Plant Stress Signaling via Mitochondrial Succinate Dehydrogenase. Plant Physiology, 2017, 173, 2029-2040.	4.8	84
23	The Transcription Factor MYB29 Is a Regulator of <i>ALTERNATIVE OXIDASE1a</i> . Plant Physiology, 2017, 173, 1824-1843.	4.8	46
24	The Mitochondrial DNA (mtDNA)-Associated Protein SWIB5 Influences mtDNA Architecture and Homologous Recombination. Plant Cell, 2017, 29, tpc.00899.2016.	6.6	11
25	Convergence of mitochondrial and chloroplastic ANAC017/PAP-dependent retrograde signalling pathways and suppression of programmed cell death. Cell Death and Differentiation, 2017, 24, 955-960.	11.2	58
26	The Roles of Mitochondrial Reactive Oxygen Species in Cellular Signaling and Stress Response in Plants. Plant Physiology, 2016, 171, 1551-1559.	4.8	354
27	Mitochondrial and Chloroplast Stress Responses Are Modulated in Distinct Touch and Chemical Inhibition Phases. Plant Physiology, 2016, 171, 2150-2165.	4.8	85
28	Retrograde signalling caused by heritable mitochondrial dysfunction is partially mediated by ANAC017 and improves plant performance. Plant Journal, 2016, 88, 542-558.	5.7	66
29	Inactivation of Mitochondrial Complex I Induces the Expression of a Twin Cysteine Protein that Targets and Affects Cytosolic, Chloroplastidic and Mitochondrial Function. Molecular Plant, 2016, 9, 696-710.	8.3	28
30	Licensed to Kill: Mitochondria, Chloroplasts, and Cell Death. Trends in Plant Science, 2015, 20, 754-766.	8.8	155
31	The EF-Hand Ca ²⁺ Binding Protein MICU Choreographs Mitochondrial Ca ²⁺ Dynamics in Arabidopsis. Plant Cell, 2015, 27, 3190-3212.	6.6	103
32	The mitochondrial outer membrane <scp>AAA ATP</scp> ase At <scp>OM</scp> 66 affects cell death and pathogen resistance in <i><scp>A</scp>rabidopsis thaliana</i> . Plant Journal, 2014, 80, 709-727.	5.7	80
33	The Mitochondrial Protein Import Component, TRANSLOCASE OF THE INNER MEMBRANE17-1, Plays a Role in Defining the Timing of Germination in Arabidopsis. Plant Physiology, 2014, 166, 1420-1435.	4.8	45
34	Anterograde and Retrograde Regulation of Nuclear Genes Encoding Mitochondrial Proteins during Growth, Development, and Stress. Molecular Plant, 2014, 7, 1075-1093.	8.3	156
35	A Functional Antagonistic Relationship between Auxin and Mitochondrial Retrograde Signaling Regulates <i>Alternative Oxidase1a</i> Expression in Arabidopsis Â. Plant Physiology, 2014, 165, 1233-1254.	4.8	87
36	The Membrane-Bound NAC Transcription Factor ANACO13 Functions in Mitochondrial Retrograde Regulation of the Oxidative Stress Response in <i>Arabidopsis</i>	6.6	293

#	Article	IF	Citations
37	A Membrane-Bound NAC Transcription Factor, ANAC017, Mediates Mitochondrial Retrograde Signaling in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 3450-3471.	6.6	291
38	AtWRKY40 and AtWRKY63 Modulate the Expression of Stress-Responsive Nuclear Genes Encoding Mitochondrial and Chloroplast Proteins Â. Plant Physiology, 2013, 162, 254-271.	4.8	175
39	Comparison of Transcriptional Changes to Chloroplast and Mitochondrial Perturbations Reveals Common and Specific Responses in Arabidopsis. Frontiers in Plant Science, 2012, 3, 281.	3.6	79
40	LETM Proteins Play a Role in the Accumulation of Mitochondrially Encoded Proteins in Arabidopsis thaliana and AtLETM2 Displays Parent of Origin Effects. Journal of Biological Chemistry, 2012, 287, 41757-41773.	3.4	54
41	REDOX regulation of mitochondrial function in plants. Plant, Cell and Environment, 2012, 35, 271-280.	5.7	19
42	TCP Transcription Factors Link the Regulation of Genes Encoding Mitochondrial Proteins with the Circadian Clock in $\langle i \rangle$ Arabidopsis thaliana $\langle i \rangle$ Â Â. Plant Cell, 2011, 22, 3921-3934.	6.6	164
43	Perturbation of Indole-3-Butyric Acid Homeostasis by the UDP-Glucosyltransferase <i>UGT74E2</i> Modulates <i>Arabidopsis</i> Architecture and Water Stress Tolerance. Plant Cell, 2010, 22, 2660-2679.	6.6	407
44	Prohibitins: mitochondrial partners in development and stress response. Trends in Plant Science, 2010, 15, 275-282.	8.8	68
45	The Transcription Factor ABI4 Is a Regulator of Mitochondrial Retrograde Expression of <i>ALTERNATIVE OXIDASE1a</i> Â Â Â Â. Plant Physiology, 2009, 150, 1286-1296.	4.8	234
46	Defining the Mitochondrial Stress Response in Arabidopsis thaliana. Molecular Plant, 2009, 2, 1310-1324.	8.3	167
47	Developmental Stage Specificity and the Role of Mitochondrial Metabolism in the Response of Arabidopsis Leaves to Prolonged Mild Osmotic Stress Â. Plant Physiology, 2009, 152, 226-244.	4.8	269
48	Alternative oxidase: a target and regulator of stress responses. Physiologia Plantarum, 2009, 137, 354-361.	5.2	211
49	Mitochondrial respiratory pathways modulate nitrate sensing and nitrogenâ€dependent regulation of plant architecture in ⟨i⟩Nicotiana sylvestris⟨i⟩. Plant Journal, 2008, 54, 976-992.	5.7	58
50	Identification of Regulatory Pathways Controlling Gene Expression of Stress-Responsive Mitochondrial Proteins in Arabidopsis Â. Plant Physiology, 2008, 147, 1858-1873.	4.8	140
51	Mitochondrial type†prohibitins of <i>Arabidopsis thaliana</i> are required for supporting proficient meristem development. Plant Journal, 2007, 52, 850-864.	5.7	114
52	MITOCHONDRIA AND CELL DEATH., 0,, 343-371.		0