## Olivier Van Aken

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9108084/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Perturbation of Indole-3-Butyric Acid Homeostasis by the<br>UDP-Glucosyltransferase <i>UGT74E2</i> Modulates <i>Arabidopsis</i> Architecture and Water Stress<br>Tolerance. Plant Cell, 2010, 22, 2660-2679.                            | 6.6 | 407       |
| 2  | The Roles of Mitochondrial Reactive Oxygen Species in Cellular Signaling and Stress Response in Plants. Plant Physiology, 2016, 171, 1551-1559.                                                                                         | 4.8 | 354       |
| 3  | The Membrane-Bound NAC Transcription Factor ANAC013 Functions in Mitochondrial Retrograde<br>Regulation of the Oxidative Stress Response in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 3472-3490.                                    | 6.6 | 293       |
| 4  | A Membrane-Bound NAC Transcription Factor, ANAC017, Mediates Mitochondrial Retrograde Signaling<br>in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 3450-3471.                                                                          | 6.6 | 291       |
| 5  | Developmental Stage Specificity and the Role of Mitochondrial Metabolism in the Response of<br>Arabidopsis Leaves to Prolonged Mild Osmotic Stress   Â. Plant Physiology, 2009, 152, 226-244.                                           | 4.8 | 269       |
| 6  | The Transcription Factor ABI4 Is a Regulator of Mitochondrial Retrograde Expression of<br><i>ALTERNATIVE OXIDASE1a</i> Â Â Â Â. Plant Physiology, 2009, 150, 1286-1296.                                                                 | 4.8 | 234       |
| 7  | Alternative oxidase: a target and regulator of stress responses. Physiologia Plantarum, 2009, 137, 354-361.                                                                                                                             | 5.2 | 211       |
| 8  | AtWRKY40 and AtWRKY63 Modulate the Expression of Stress-Responsive Nuclear Genes Encoding<br>Mitochondrial and Chloroplast Proteins  Â. Plant Physiology, 2013, 162, 254-271.                                                           | 4.8 | 175       |
| 9  | Defining the Mitochondrial Stress Response in Arabidopsis thaliana. Molecular Plant, 2009, 2,<br>1310-1324.                                                                                                                             | 8.3 | 167       |
| 10 | TCP Transcription Factors Link the Regulation of Genes Encoding Mitochondrial Proteins with the<br>Circadian Clock in <i>Arabidopsis thaliana</i> Â Â. Plant Cell, 2011, 22, 3921-3934.                                                 | 6.6 | 164       |
| 11 | Anterograde and Retrograde Regulation of Nuclear Genes Encoding Mitochondrial Proteins during<br>Growth, Development, and Stress. Molecular Plant, 2014, 7, 1075-1093.                                                                  | 8.3 | 156       |
| 12 | Licensed to Kill: Mitochondria, Chloroplasts, and Cell Death. Trends in Plant Science, 2015, 20, 754-766.                                                                                                                               | 8.8 | 155       |
| 13 | Identification of Regulatory Pathways Controlling Gene Expression of Stress-Responsive<br>Mitochondrial Proteins in Arabidopsis  Â. Plant Physiology, 2008, 147, 1858-1873.                                                             | 4.8 | 140       |
| 14 | Mitochondrial typeâ€I prohibitins of <i>Arabidopsis thaliana</i> are required for supporting proficient<br>meristem development. Plant Journal, 2007, 52, 850-864.                                                                      | 5.7 | 114       |
| 15 | The EF-Hand Ca <sup>2+</sup> Binding Protein MICU Choreographs Mitochondrial Ca <sup>2+</sup><br>Dynamics in Arabidopsis. Plant Cell, 2015, 27, 3190-3212.                                                                              | 6.6 | 103       |
| 16 | A MYC2/MYC3/MYC4-dependent transcription factor network regulates water spray-responsive gene expression and jasmonate levels. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23345-23356. | 7.1 | 95        |
| 17 | Plant mitochondria – past, present and future. Plant Journal, 2021, 108, 912-959.                                                                                                                                                       | 5.7 | 94        |
| 18 | A Functional Antagonistic Relationship between Auxin and Mitochondrial Retrograde Signaling<br>Regulates <i>Alternative Oxidase1a</i> Expression in Arabidopsis  Â. Plant Physiology, 2014, 165, 1233-1254.                             | 4.8 | 87        |

**OLIVIER VAN AKEN** 

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Mitochondrial and Chloroplast Stress Responses Are Modulated in Distinct Touch and Chemical<br>Inhibition Phases. Plant Physiology, 2016, 171, 2150-2165.                                                               | 4.8  | 85        |
| 20 | Salicylic Acid-Dependent Plant Stress Signaling via Mitochondrial Succinate Dehydrogenase. Plant<br>Physiology, 2017, 173, 2029-2040.                                                                                   | 4.8  | 84        |
| 21 | The mitochondrial outer membrane <scp>AAA ATP</scp> ase At <scp>OM</scp> 66 affects cell death and pathogen resistance in <i><scp>A</scp>rabidopsis thaliana</i> . Plant Journal, 2014, 80, 709-727.                    | 5.7  | 80        |
| 22 | Comparison of Transcriptional Changes to Chloroplast and Mitochondrial Perturbations Reveals<br>Common and Specific Responses in Arabidopsis. Frontiers in Plant Science, 2012, 3, 281.                                 | 3.6  | 79        |
| 23 | Mitochondrial Energy Signaling and Its Role in the Low-Oxygen Stress Response of Plants. Plant<br>Physiology, 2018, 176, 1156-1170.                                                                                     | 4.8  | 79        |
| 24 | Mitophagy: A Mechanism for Plant Growth and Survival. Trends in Plant Science, 2018, 23, 434-450.                                                                                                                       | 8.8  | 76        |
| 25 | Multiparametric realâ€ŧime sensing of cytosolic physiology links hypoxia responses to mitochondrial<br>electron transport. New Phytologist, 2019, 224, 1668-1684.                                                       | 7.3  | 69        |
| 26 | Prohibitins: mitochondrial partners in development and stress response. Trends in Plant Science, 2010, 15, 275-282.                                                                                                     | 8.8  | 68        |
| 27 | Retrograde signalling caused by heritable mitochondrial dysfunction is partially mediated by ANAC017 and improves plant performance. Plant Journal, 2016, 88, 542-558.                                                  | 5.7  | 66        |
| 28 | Mitochondrial respiratory pathways modulate nitrate sensing and nitrogenâ€dependent regulation of plant architecture in <i>Nicotiana sylvestris</i> . Plant Journal, 2008, 54, 976-992.                                 | 5.7  | 58        |
| 29 | Convergence of mitochondrial and chloroplastic ANAC017/PAP-dependent retrograde signalling pathways and suppression of programmed cell death. Cell Death and Differentiation, 2017, 24, 955-960.                        | 11.2 | 58        |
| 30 | Mitochondrial redox systems as central hubs in plant metabolism and signaling. Plant Physiology, 2021, 186, 36-52.                                                                                                      | 4.8  | 56        |
| 31 | LETM Proteins Play a Role in the Accumulation of Mitochondrially Encoded Proteins in Arabidopsis<br>thaliana and AtLETM2 Displays Parent of Origin Effects. Journal of Biological Chemistry, 2012, 287,<br>41757-41773. | 3.4  | 54        |
| 32 | The Transcription Factor MYB29 Is a Regulator of <i>ALTERNATIVE OXIDASE1a</i> . Plant Physiology, 2017, 173, 1824-1843.                                                                                                 | 4.8  | 46        |
| 33 | The Mitochondrial Protein Import Component, TRANSLOCASE OF THE INNER MEMBRANE17-1, Plays a Role<br>in Defining the Timing of Germination in Arabidopsis. Plant Physiology, 2014, 166, 1420-1435.                        | 4.8  | 45        |
| 34 | Mitochondrial unfolded protein-related responses across kingdoms: similar problems, different<br>regulators. Mitochondrion, 2020, 53, 166-177.                                                                          | 3.4  | 41        |
| 35 | Inactivation of Mitochondrial Complex I Induces the Expression of a Twin Cysteine Protein that<br>Targets and Affects Cytosolic, Chloroplastidic and Mitochondrial Function. Molecular Plant, 2016, 9,<br>696-710.      | 8.3  | 28        |
| 36 | Retrograde signals from endosymbiotic organelles: a common control principle in eukaryotic cells.<br>Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190396.                       | 4.0  | 24        |

**OLIVIER VAN AKEN** 

| #  | Article                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | The transcription factor ANAC017 is a key regulator of mitochondrial proteotoxic stress responses in plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190411.                                                        | 4.0  | 22        |
| 38 | Touch signaling and thigmomorphogenesis are regulated by complementary CAMTA3- and JA-dependent pathways. Science Advances, 2022, 8, .                                                                                                                           | 10.3 | 22        |
| 39 | REDOX regulation of mitochondrial function in plants. Plant, Cell and Environment, 2012, 35, 271-280.                                                                                                                                                            | 5.7  | 19        |
| 40 | An Assembly Factor Promotes Assembly of Flavinated SDH1 into the Succinate Dehydrogenase Complex.<br>Plant Physiology, 2018, 177, 1439-1452.                                                                                                                     | 4.8  | 17        |
| 41 | Neofunctionalization of Mitochondrial Proteins and Incorporation into Signaling Networks in Plants. Molecular Biology and Evolution, 2019, 36, 974-989.                                                                                                          | 8.9  | 17        |
| 42 | Increased expression of <i>ANAC017</i> primes for accelerated senescence. Plant Physiology, 2021, 186, 2205-2221.                                                                                                                                                | 4.8  | 15        |
| 43 | Joint inhibition of mitochondrial complex IV and alternative oxidase by genetic or chemical means<br>represses chloroplast transcription in <i>Arabidopsis</i> . Philosophical Transactions of the Royal<br>Society B: Biological Sciences, 2020, 375, 20190409. | 4.0  | 13        |
| 44 | Carbon starvation, senescence and specific mitochondrial stresses, but not nitrogen starvation and general stresses, are major triggers for mitophagy in Arabidopsis. Autophagy, 2022, 18, 2894-2912.                                                            | 9.1  | 12        |
| 45 | The Mitochondrial DNA (mtDNA)-Associated Protein SWIB5 Influences mtDNA Architecture and Homologous Recombination. Plant Cell, 2017, 29, tpc.00899.2016.                                                                                                         | 6.6  | 11        |
| 46 | Studying Retrograde Signaling in Plants. Methods in Molecular Biology, 2018, 1743, 73-85.                                                                                                                                                                        | 0.9  | 9         |
| 47 | Globular structures in roots accumulate phosphorus to extremely high concentrations following phosphorus addition. Plant, Cell and Environment, 2019, 42, 1987-2002.                                                                                             | 5.7  | 9         |
| 48 | Development of a real-time quantitative PCR method for detection and quantification of Prevotella copri. BMC Microbiology, 2021, 21, 23.                                                                                                                         | 3.3  | 6         |
| 49 | The mitochondrial <scp>LYR</scp> protein <scp>SDHAF1</scp> is required for succinate dehydrogenase activity in Arabidopsis. Plant Journal, 2022, 110, 499-512.                                                                                                   | 5.7  | 6         |
| 50 | Purification of Leaf Mitochondria from Arabidopsis thaliana Using Percoll Density Gradients.<br>Methods in Molecular Biology, 2022, 2363, 1-12.                                                                                                                  | 0.9  | 4         |
| 51 | Evaluation of Antibiotic-Based Selection Methods for Camelina sativa Stable Transformants. Cells, 2022, 11, 1068.                                                                                                                                                | 4.1  | 3         |
| 52 | MITOCHONDRIA AND CELL DEATH. , 0, , 343-371.                                                                                                                                                                                                                     |      | 0         |