List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9107838/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Germination of Chenopodium Album in Response to Microwave Plasma Treatment. Plasma Science and Technology, 2008, 10, 506-511.	1.5	105
2	A study of the reactions of the ground and metastable states of C+, N+, S+ and N2+ at 300 K. International Journal of Mass Spectrometry and Ion Physics, 1979, 29, 231-247.	1.3	103
3	Measurements with an emissive probe in the CASTOR tokamak. Plasma Physics and Controlled Fusion, 2002, 44, 567-578.	2.1	90
4	Does Cold Plasma Affect Breaking Dormancy and Seed Germination? A Study on Seeds of Lamb's Quarters (Chenopodium album agg.). Plasma Science and Technology, 2009, 11, 750-754.	1.5	81
5	An experimental study of plasma density determination by a cylindrical Langmuir probe at different pressures and magnetic fields in a cylindrical magnetron discharge in heavy rare gases. Journal Physics D: Applied Physics, 1997, 30, 1763-1777.	2.8	80
6	Advanced integrated stationary afterglow method for experimental study of recombination of processes of H3+ and D3+ ions with electrons. International Journal of Mass Spectrometry, 2002, 218, 105-130.	1.5	80
7	Formation of TiO _{<i>x</i>} films produced by high-power pulsed magnetron sputtering. Journal Physics D: Applied Physics, 2008, 41, 055202.	2.8	78
8	An absolute proton affinity scale in the â^¼130–140 kcal molâ^'1 range. Journal of Chemical Physics, 1989, 4037-4042.	91 3.0	75
9	Time-resolved investigation of dual high power impulse magnetron sputtering with closed magnetic field during deposition of Ti–Cu thin films. Journal of Applied Physics, 2010, 108, .	2.5	57
10	Size-controlled formation of Cu nanoclusters in pulsed magnetron sputtering system. Surface and Coatings Technology, 2011, 205, 2755-2762.	4.8	57
11	Physical properties of homogeneous TiO ₂ films prepared by high power impulse magnetron sputtering as a function of crystallographic phase and nanostructure. Journal Physics D: Applied Physics, 2009, 42, 105204.	2.8	52
12	A novel approach to direct measurement of the plasma potential. European Physical Journal D, 2004, 54, C95-C99.	0.4	50
13	A contribution to the assessment of the influence of collisions on the measurements with Langmuir probes in the thick sheath working regime. European Physical Journal D, 1985, 35, 988-1006.	0.4	48
14	A Collisional Model of the Positive Ion Collection by a Cylindrical Langmuir Probe. Contributions To Plasma Physics, 1994, 34, 59-68.	1.1	48
15	Effect of nitrogen doping on TiO _x N _y thin film formation at reactive high-power pulsed magnetron sputtering. Journal Physics D: Applied Physics, 2010, 43, 285203.	2.8	46
16	The recombination of H3+ ions with electrons: dependence on partial pressure of H2. Chemical Physics Letters, 2000, 331, 209-214.	2.6	44
17	Time-resolved probe diagnostics of pulsed DC magnetron discharge during deposition of TiOx layers. Surface and Coatings Technology, 2006, 201, 2512-2519.	4.8	43
18	The thermal energy reactions HCl+ + SF6 → SF5+ + HF + Cl and HCl+ + CF4 → CF3+ + HF + Cl. International Journal of Mass Spectrometry and Ion Processes, 1987, 79, 231-235.	1.8	41

#	Article	IF	CITATIONS
19	Comparative measurements of the plasma potential with the ball-pen and emissive probes on the CASTOR tokamak. European Physical Journal D, 2005, 55, 235-242.	0.4	41
20	Emissive Probe Diagnostics in Low Temperature Plasma – Effect of Space Charge and Variations of Electron Saturation Current. Contributions To Plasma Physics, 2008, 48, 491-496.	1.1	40
21	Effect of mid-frequency discharge assistance on dual-high power impulse magnetron sputtering. Surface and Coatings Technology, 2012, 206, 2801-2809.	4.8	40
22	Deposition of rutile (TiO2) with preferred orientation by assisted high power impulse magnetron sputtering. Surface and Coatings Technology, 2013, 222, 112-117.	4.8	39
23	Emissive probe measurements of plasma potential fluctuations in the edge plasma regions of tokamaks. Review of Scientific Instruments, 2003, 74, 1583-1587.	1.3	35
24	Langmuir probe diagnostics of a plasma jet system. Plasma Sources Science and Technology, 2009, 18, 014009.	3.1	32
25	Measurements of the reaction rate coefficients of the endoergic reactions C+(2P) + H2(D2) → CH+(CD+) + H(D) from threshold to centre-of-mass energy 0.8 eV. International Journal of Mass Spectrometry and Ion Processes, 1986, 74, 251-263.	1.8	31
26	Characterization of a Magnetron Plasma for Deposition of Titanium Oxide and Titanium Nitride Films. Contributions To Plasma Physics, 2005, 45, 348-357.	1.1	31
27	Experimental study of recombination of H3+ions with electrons relevant for interstellar and planetary plasmas. Journal of Physics B: Atomic, Molecular and Optical Physics, 2001, 34, L485-L494.	1.5	29
28	Recombination ofD3+Ions in the Afterglow of a He-Ar-D2Plasma. Physical Review Letters, 2002, 88, 044802.	7.8	29
29	Growth and properties of Ti-Cu films with respect to plasma parameters in dual-magnetron sputtering discharges. European Physical Journal D, 2011, 64, 427-435.	1.3	29
30	lonized vapor deposition of antimicrobial Ti–Cu films with controlled copper release. Thin Solid Films, 2014, 550, 389-394.	1.8	29
31	Thermionic Vacuum Arc—A Versatile Technology for Thin Film Deposition and Its Applications. Coatings, 2020, 10, 211.	2.6	28
32	Highly ionized physical vapor deposition plasma source working at very low pressure. Applied Physics Letters, 2012, 100, .	3.3	27
33	The rate coefficients for several ternary association reactions of CH3+ in the temperature range 100–300 K. Chemical Physics Letters, 1979, 63, 166-170.	2.6	26
34	Timeâ€Resolved Diagnostics of Dual High Power Impulse Magnetron Sputtering With Pulse Delays of 15 µs and 500 µs. Contributions To Plasma Physics, 2011, 51, 237-245.	1.1	26
35	SIFDT studies of the reactions of N+4 ions with H2, D2, and Ar. International Journal of Mass Spectrometry and Ion Processes, 1987, 81, 235-246.	1.8	24
36	Radial behaviour of the electron energy distribution function in the cylindrical magnetron discharge in argon. Journal Physics D: Applied Physics, 1999, 32, 2655-2665.	2.8	24

#	Article	IF	CITATIONS
37	Kinetic simulation model of magnetron discharges. Physical Review E, 2001, 63, 056408.	2.1	24
38	Study of Electronegative Ar/O ² Discharge by Means of Langmuir Probe. Contributions To Plasma Physics, 2008, 48, 503-508.	1.1	24
39	The high pressure torch discharge plasma source. Plasma Sources Science and Technology, 1999, 8, 15-21.	3.1	22
40	Measurement of the Parameters of Atmospheric-Pressure Barrier-Torch Discharge. Plasma Processes and Polymers, 2005, 2, 501-506.	3.0	22
41	A Study of the Gas Flow in the RF Lowâ€Pressure Supersonic Jet Plasma Chemical System. Contributions To Plasma Physics, 1994, 34, 765-772.	1.1	21
42	Pulsed gas aggregation for improved nanocluster growth and flux. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1189-1193.	1.8	21
43	Investigation of ionized metal flux in enhanced high power impulse magnetron sputtering discharges. Journal of Applied Physics, 2014, 115, .	2.5	20
44	Langmuir Probe Determination of Charged Particle Number Density in a Flowing Afterglow Plasma. Contributions To Plasma Physics, 1995, 35, 503-516.	1.1	19
45	Measurement of plasma parameters in the far-field plume of a Hall effect thruster. Plasma Sources Science and Technology, 2011, 20, 065012.	3.1	18
46	Plasma diagnostics of low pressure high power impulse magnetron sputtering assisted by electron cyclotron wave resonance plasma. Journal of Applied Physics, 2012, 112, .	2.5	18
47	The use of Langmuir Probe Methods for Plasma Diagnostic in Middle Pressure Discharges. Contributions To Plasma Physics, 1990, 30, 167-184.	1.1	17
48	The reactions of positive and negative halogen ions with Cl2 and Br2. Journal of Chemical Physics, 1993, 98, 8660-8666.	3.0	17
49	The Influence of Collisions in the Space Charge Sheath on the Ion current Collected by a Langmuir Probe. Contributions To Plasma Physics, 1995, 35, 3-14.	1.1	17
50	The energy dependence of some neon-ion-neutral reaction rate coefficients investigated in a flow-drift tube experiment. Journal of Physics B: Atomic and Molecular Physics, 1981, 14, 2719-2729.	1.6	16
51	Vibrational quenching of HCl+(ν=1) and DCl+(ν=1) by Ar and Kr. Chemical Physics Letters, 1988, 144, 131-13	5.2.6	15
52	Langmuir Probe Diagnostics for Medium Pressure and Magnetised Low-Temperature Plasma. European Physical Journal Special Topics, 1997, 07, C4-397-C4-411.	0.2	15
53	Monitoring of conditions inside gas aggregation cluster source during production of Ti/TiO _x nanoparticles. Plasma Sources Science and Technology, 2017, 26, 105003.	3.1	15
54	Probe diagnostics of the RF barrier-torch discharge at atmospheric pressure. Surface and Coatings Technology, 2003, 174-175, 530-534.	4.8	14

#	Article	IF	CITATIONS
55	Experimental investigation of the change of the electron saturation current of a dc-heated emissive probe. European Physical Journal D, 2006, 56, B932-B937.	0.4	14
56	Crystalline structure and morphology of TiO2 thin films deposited by means of hollow cathode plasma jet with supporting anode. Surface and Coatings Technology, 2016, 291, 123-129.	4.8	14
57	Time-resolved Langmuir probe investigation of hybrid high power impulse magnetron sputtering discharges. Vacuum, 2013, 90, 176-181.	3.5	13
58	Electronic method for direct display of the electron energy distributions in plasma. European Physical Journal D, 1971, 21, 794-798.	0.4	12
59	Study of mass and cluster flux in a pulsed gas system with enhanced nanoparticle aggregation. Journal of Applied Physics, 2014, 116, .	2.5	12
60	Magnesium plasma diagnostics by heated probe and characterization of the Mg thin films deposited by thermionic vacuum arc technology. Plasma Sources Science and Technology, 2015, 24, 035008.	3.1	12
61	TiO ₂ nanoparticle detection by means of laser beam scattering in a hollow cathode plasma jet. Journal Physics D: Applied Physics, 2016, 49, 265201.	2.8	12
62	Iron Oxide and Iron Sulfide Films Prepared for Dye-Sensitized Solar Cells. Materials, 2020, 13, 1797.	2.9	12
63	A contribution to the study of the influence of metastables in the flowing afterglow plasma. European Physical Journal D, 1987, 37, 188-193.	0.4	11
64	Title is missing!. European Physical Journal D, 1999, 49, 483-498.	0.4	11
65	Monte Carlo Simulations of the Electron Currents Collected by Electrostatic Probes. Contributions To Plasma Physics, 2004, 44, 577-581.	1.1	11
66	Electron Temperature Measurement in a Premixed Flat Flame Using the Double Probe Method. Contributions To Plasma Physics, 2012, 52, 692-698.	1.1	11
67	Langmuir probe measurement of the bismuth plasma plume formed by an extreme-ultraviolet pulsed laser. Journal Physics D: Applied Physics, 2014, 47, 405205.	2.8	11
68	Time resolved measurements of the electron energy distribution in unstable plasma I. Measurement technique. European Physical Journal D, 1971, 21, 62-70.	0.4	10
69	Simple Physical Model of Generation of the Lowâ€Pressure Radio Frequency Supersonic Plasma Jet. Contributions To Plasma Physics, 1994, 34, 749-764.	1.1	10
70	Time-resolved measurement of plasma parameters in the far-field plume of a low-power Hall effect thruster. Plasma Sources Science and Technology, 2012, 21, 055020.	3.1	10
71	The Interaction of the Supersonic Plasmaâ€Jet with the Substrate in the RF Plasmaâ€Chemical Reactor. Contributions To Plasma Physics, 1996, 36, 605-611.	1.1	9
72	Application of the Ballâ€Pen Probe in Two Lowâ€Temperature Magâ€netised Plasma Devices and in Torsatron TJâ€K. Contributions To Plasma Physics, 2013, 53, 39-44.	1.1	9

MILAN TICHY

#	Article	IF	CITATIONS
73	The application of a selected-ion flow drift tube to the determination of proton affinity differences. International Journal of Mass Spectrometry and Ion Processes, 1989, 93, 165-175.	1.8	8
74	Selected ion flow drift tube studies of the reaction of HBr+ with various neutral molecules. International Journal of Mass Spectrometry and Ion Processes, 1990, 97, 211-218.	1.8	8
75	Two-dimensional nonlocal model of axially and radially inhomogeneous plasma of cylindrical magnetron discharge. Physical Review E, 2003, 68, 016401.	2.1	8
76	2-D Experimental Study of the Plasma Parameter Variations of the Magnetically Sustained DC Discharge in Cylindrical Symmetry in Argon. Contributions To Plasma Physics, 2004, 44, 613-618.	1.1	8
77	Measurements with the emissive probe in the cylindrical magnetron. European Physical Journal D, 2006, 56, B1002-B1008.	0.4	8
78	Electron energy distribution function in a low-power Hall thruster discharge and near-field plume. Physics of Plasmas, 2018, 25, .	1.9	8
79	Magnesium-silver cathodes for efficient charge injection into Organic Light Emitting Diodes deposited by LTVA method. Journal of Alloys and Compounds, 2021, 869, 159364.	5.5	8
80	A Probe Method for Determination of time Evolution of Metastable Atoms Density in a Flowing Afterglow Plasma. Contributions To Plasma Physics, 1990, 30, 437-448.	1.1	7
81	Radiative lifetimes of vibrationally excited HCl+ (ï = 1) and DCl+ (ï = 1) ions. International Journal of Mass Spectrometry and Ion Processes, 1990, 97, 203-210.	1.8	7
82	SIFT studies of the reactions of rare gas atomic ions with Cl2 and Br2. International Journal of Mass Spectrometry and Ion Processes, 1993, 129, 155-162.	1.8	7
83	Radio-frequency low pressure supersonic jet plasma chemical system. Surface and Coatings Technology, 1995, 74-75, 212-214.	4.8	7
84	Advanced Integrated Stationary Afterglow apparatus for study of recombination in Heâ^'Arâ^'H2 plasma. European Physical Journal D, 2000, 50, 329-334.	0.4	7
85	Electron kinetics in cylindrical discharges of magnetron configurations. Plasma Sources Science and Technology, 2006, 15, 228-236.	3.1	7
86	Oxidation behavior of Cu nanoparticles embedded into semiconductive TiO2 matrix. Thin Solid Films, 2015, 589, 864-871.	1.8	7
87	The deposition of titanium dioxide nanoparticles by means of a hollow cathode plasma jet in dc regime. Plasma Sources Science and Technology, 2015, 24, 035025.	3.1	7
88	Contribution to the electron energy distribution function measurement in the afterglow discharge. European Physical Journal D, 1978, 28, 1335-1341.	0.4	6
89	Production of metastable O+* in the reaction between He+and O2at 300K. Journal of Physics B: Atomic and Molecular Physics, 1979, 12, 2947-2950.	1.6	6
90	Measurement of the electron distribution function in flowing afterglow plasma by means of Langmuir probe. European Physical Journal D, 1983, 33, 1226-1229.	0.4	6

#	Article	IF	CITATIONS
91	The Application of Langmuir Probes to the Measurements in Flowing Afterglow Plasma. Contributions To Plasma Physics, 1990, 30, 185-192.	1.1	6
92	A Method for the Ion Density Estimation from the Double Probe Data at Medium and Higher Pressures. Contributions To Plasma Physics, 1994, 34, 51-57.	1.1	6
93	Fluctuation measurements with emissive probes in tokamaks. European Physical Journal D, 2002, 52, 1115-1120.	0.4	6
94	Surfatron plasma-based sterilisation. European Physical Journal D, 2006, 56, B843-B847.	0.4	6
95	A study of barrier-torch plasma jet system at atmospheric pressure. European Physical Journal D, 2006, 56, B1212-B1217.	0.4	6
96	Floating harmonic probe measurements in the low-temperature plasma jet deposition system. Journal Physics D: Applied Physics, 2018, 51, 025205.	2.8	6
97	Plasma diagnostics and characterization of the Mg and Mg–Zn thin films deposited by thermionic vacuum arc (TVA) method. Vacuum, 2019, 167, 129-135.	3.5	6
98	The dependence of the electron distribution function on the discharge current in Ne and Ne-He discharge. European Physical Journal D, 1972, 22, 52-57.	0.4	5
99	A study of the DC discharge in a cylindrical magnetron comparison of experiment and a pic model. European Physical Journal D, 2000, 50, 427-432.	0.4	5
100	Recombination of KrH+ and XeH+ ions with electrons in low temperature plasma. European Physical Journal D, 2006, 56, B854-B864.	0.4	5
101	Measurement of Plasma Parameters in Low Temperature High Density Hollow Cathode Plasma Jet Working in Magnetic Field. Contributions To Plasma Physics, 2006, 46, 445-450.	1.1	5
102	Spatial Distribution of Plasma Parameters in DCâ€Energized Hollow Cathode Plasma Jet. Contributions To Plasma Physics, 2010, 50, 878-885.	1.1	5
103	Ion current to a substrate in the pulsed dc hollow cathode plasma jet deposition system. Journal Physics D: Applied Physics, 2010, 43, 124019.	2.8	5
104	The time-varying electron energy distribution function in the plume of a Hall thruster. Plasma Sources Science and Technology, 2014, 23, 065001.	3.1	5
105	Comparative measurements of plasma potential with ball-pen and Langmuir probe in low-temperature magnetized plasma. Physics of Plasmas, 2015, 22, 033516.	1.9	5
106	Heterogeneous Arc Discharge Plasma in a Magnetic Field. Russian Physics Journal, 2017, 60, 1099-1108.	0.4	5
107	Ion temperature measurements in the tokamak scrape-off layer with high temporal resolution. Nuclear Fusion, 2021, 61, 036023.	3.5	5
108	Apparatus and experimental method for measurements of the potential distributions in dc glow discharges. Review of Scientific Instruments, 1998, 69, 2037-2044.	1.3	4

MILAN TICHY

#	Article	IF	CITATIONS
109	A novel system for studies of dc discharge in cylindrical magnetron. European Physical Journal D, 2000, 50, 419-426.	0.4	4
110	Investigation of plasma parameters in the DC planar magnetron in balanced and unbalanced mode. European Physical Journal D, 2004, 54, C822-C827.	0.4	4
111	Investigation of the time evolution of plasma parameters in a pulsed magnetron discharge. European Physical Journal D, 2006, 56, B1364-B1370.	0.4	4
112	Probe Diagnostics of Microwave Plasma at Frequency 2.45 GHz in CW and Pulse Regime. Contributions To Plasma Physics, 2006, 46, 439-444.	1.1	4
113	A Study of Plasma Parameters in Hollow Cathode Plasma Jet in Pulse Regime. Contributions To Plasma Physics, 2010, 50, 886-891.	1.1	4
114	Measurement of the plasma and neutral gas flow velocities in a low-pressure hollow-cathode plasma jet sputtering system. Plasma Sources Science and Technology, 2013, 22, 015020.	3.1	4
115	Time resolved measurements of the energy distribution in unstable plasma II. Measurement in the ionization waves. European Physical Journal D, 1971, 21, 71-76.	0.4	3
116	Langmuir Probe Determination of Charged Particles Density in an rf Discharge. Contributions To Plasma Physics, 1991, 31, 43-47.	1.1	3
117	The Radio Frequency Hollow Cathode Discharge Induced by the RF Discharge in the Plasma-Jet Chemical Reactor. Contributions To Plasma Physics, 2002, 42, 119-131.	1.1	3
118	Diagnostics of surfatron-generated plasma by probe measurements and emission spectroscopy. European Physical Journal D, 2004, 54, C970-C975.	0.4	3
119	Fluctuations of the magnetically-supported dc discharge in coaxial configuration. Vacuum, 2004, 76, 437-445.	3.5	3
120	Modeling and Diagnostic of the Plasma of Magnetic Field Supported Discharges. Contributions To Plasma Physics, 2005, 45, 319-327.	1.1	3
121	Surfatron Plasma Source Working at Frequency 2.45 GHz for Technological Applications. AIP Conference Proceedings, 2006, , .	0.4	3
122	Deposition of Ba _{<i>x</i>} Sr _{1–<i>x</i>} TiO ₃ thin Films by Double RF Hollow Cathode Plasma Jet System. Contributions To Plasma Physics, 2008, 48, 515-520.	1.1	3
123	Application of microcracked columnar TiO2 thin films deposited by DC hollow cathode plasma jet in dye-sensitized solar cells. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	2.1	3
124	In-situ impedance spectroscopy of a plasma-semiconductor thin film system during reactive sputter deposition. Journal of Applied Physics, 2019, 126, 023301.	2.5	3
125	Floating harmonic probe for diagnostic of pulsed discharges. Surface and Coatings Technology, 2019, 357, 879-885.	4.8	3
126	Influence of metastable-metastable collisions on electron distribution function in afterglow. European Physical Journal D, 1988, 38, 47-52.	0.4	2

MILAN TICHY

#	Article	IF	CITATIONS
127	Langmuir probe diagnostic for measurement of recombination rates of positive ions with electrons in stationary afterglow system. Vacuum, 2004, 76, 457-463.	3.5	2
128	Electrical Probe Diagnostics of the Hollow Cathode Plasma Jet System for Deposition of TiO _{<i>x</i>} Thin Films. Contributions To Plasma Physics, 2008, 48, 527-533.	1.1	2
129	Langmuir probe study of a magnetically enhanced RF plasma source at pressures below 0.1 Pa. Plasma Sources Science and Technology, 2011, 20, 045018.	3.1	2
130	Experimental Study of the Discharge in the Low Pressure Plasma Jet Sputtering System. Contributions To Plasma Physics, 2013, 53, 10-15.	1.1	2
131	Timeâ€Resolved Measurements of Plasma Properties Using Electrostatic Probes in the Crossâ€Field Discharge of a Hall Effect Thruster. Contributions To Plasma Physics, 2013, 53, 63-68.	1.1	2
132	Development of a High-Frequency Emissive Probe System for Plasma Potential Measurements in a Hall Thruster. IEEE Transactions on Plasma Science, 2015, 43, 29-34.	1.3	2
133	Particularities of Cu and Zn nanoparticles formation in a magnetic field. , 2019, , .		2
134	Plasma Diagnostics in Reactive High-Power Impulse Magnetron Sputtering System Working in Ar + H2S Gas Mixture. Coatings, 2020, 10, 246.	2.6	2
135	Time resolved measurements in the Ne positive column IV. Study of the electron distribution function in low-pressure arc. European Physical Journal D, 1972, 22, 264-269.	0.4	1
136	Apparatus for the electron energy distribution function measurement in the afterglow discharge. European Physical Journal D, 1977, 27, 1027-1033.	0.4	1
137	Comment on determination of electron temperature from Langmuir probe data in tokamak edge plasma. European Physical Journal D, 1990, 40, 678-685.	0.4	1
138	Title is missing!. European Physical Journal D, 1999, 49, 1685-1701.	0.4	1
139	A study of discharge fluctuations in magnetically-supported dc discharge in cylindrical and inverted cylindrical configuration. European Physical Journal D, 2004, 54, C735-C741.	0.4	1
140	Measurements of plasma parameters during BaxSr1â^'x TiO3 thin films deposition by double hollow cathode plasma jet system. European Physical Journal D, 2006, 56, B1283-B1289.	0.4	1
141	Measuring the Ion Flux to the Deposition Substrate in the Hollow Cathode Plasma Jet. AIP Conference Proceedings, 2008, , .	0.4	1
142	Method for measuring the electron distribution function in the low temperature plasma with a high time resolution. European Physical Journal D, 1987, 37, 179-187.	0.4	0
143	PIC-MCC Modeling of the Cylindrical Magnetron Discharge. AIP Conference Proceedings, 2003, , .	0.4	0
144	Experimental Study of Axial Plasma Parameter Variations in the Cylindrical Magnetron Discharge. AIP Conference Proceedings, 2003, , .	0.4	0

#	Article	IF	CITATIONS
145	Measurements of the Fluctuation-Induced Flux with Emissive Probes in the CASTOR Tokamak. AIP Conference Proceedings, 2003, , .	0.4	0
146	Applicability of Electron Emissive Probes for Plasma Potential and Electric Field Measurements in Magnetized Plasmas. AIP Conference Proceedings, 2003, , .	0.4	0
147	Kinetic Modeling Of Axially Non-Uniform Cylindrical Magnetron Discharge. AlP Conference Proceedings, 2003, , .	0.4	0
148	Observation of Wave-Like Structures in Magnetized DC Dischargein Cylindrical Symmetry in Argon. Contributions To Plasma Physics, 2006, 46, 361-366.	1.1	0
149	Registration of a laser beam scattered from an aerosol located in the probe beam aperture. AIP Conference Proceedings, 2019, , .	0.4	0
150	Ablation of single-crystalline cesium iodide by extreme ultraviolet capillary-discharge laser. Nukleonika, 2020, 65, 205-210.	0.8	0