Vincent Laudet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9106848/publications.pdf

Version: 2024-02-01

123 papers 10,909 citations

47006 47 h-index 101 g-index

127 all docs

127 docs citations

times ranked

127

11190 citing authors

#	Article	IF	CITATIONS
1	Édouard Chatton, arpenteur des mondes minuscules. Pourlascience Fr, 2022, N° 532 – février, 74-81.	0.0	O
2	Small molecules as products of evolution. Current Biology, 2022, 32, R100-R105.	3.9	6
3	A chromosome-scale genome assembly of the false clownfish, <i>Amphiprion ocellaris</i> . G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	11
4	Transcriptomes of Giant Sea Anemones from Okinawa as a Tool for Understanding Their Phylogeny and Symbiotic Relationships with Anemonefish. Zoological Science, 2022, 39, .	0.7	4
5	Direct development of the catfish pectoral fin: An alternative pectoral fin pattern of teleosts. Developmental Dynamics, 2022, 251, 1816-1833.	1.8	3
6	A star is born again: Methods for larval rearing of an emerging model organism, the False clownfish <i>Amphiprion ocellaris</i> . Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2021, 336, 376-385.	1.3	15
7	A structural signature motif enlightens the origin and diversification of nuclear receptors. PLoS Genetics, 2021, 17, e1009492.	3.5	8
8	The real Nemo movie: Description of embryonic development in <scp><i>Amphiprion ocellaris</i></scp> from first division to hatching. Developmental Dynamics, 2021, 250, 1651-1667.	1.8	5
9	Thyroid hormones regulate the formation and environmental plasticity of white bars in clownfishes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	29
10	Variation on a theme: pigmentation variants and mutants of anemonefish. EvoDevo, 2021, 12, 8.	3.2	10
11	Anemonefish, a model for Eco-Evo-Devo. EvoDevo, 2020, 11, 20.	3.2	33
12	Anthropogenic stressors impact fish sensory development and survival via thyroid disruption. Nature Communications, 2020, 11, 3614.	12.8	42
13	Interplay between hormonal and morphological changes throughout a critical period of larval rearing in the orbicular batfish. Aquaculture Reports, 2020, 18, 100521.	1.7	O
14	Epidemics will always come (and go): The need to prepare for the next one, research on COVID-19, and the role of molecular and cellular endocrinology. Molecular and Cellular Endocrinology, 2020, 511, 110863.	3.2	3
15	Marine Life Cycle: A Polluted Terra Incognita Is Unveiled. Current Biology, 2020, 30, R130-R133.	3.9	4
16	The Vertebrate Tooth Row: Is It Initiated by a Single Organizing Tooth?. BioEssays, 2020, 42, e1900229.	2.5	12
17	ZP4 Is Present in Murine Zona Pellucida and Is Not Responsible for the Specific Gamete Interaction. Frontiers in Cell and Developmental Biology, 2020, 8, 626679.	3.7	8
18	The Ectodysplasin receptor EDAR acts as a tumor suppressor in melanoma by conditionally inducing cell death. Cell Death and Differentiation, 2019, 26, 443-454.	11,2	25

#	Article	IF	Citations
19	The first formed tooth serves as a signalling centre to induce the formation of the dental row in zebrafish. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190401.	2.6	13
20	Staging and normal table of postembryonic development of the clownfish (<i>Amphiprion) Tj ETQq0 0 0 rgBT /0</i>	Overlock 10	Э Т£ 50 702 Т
21	Insights into the Genomics of Clownfish Adaptive Radiation: Genetic Basis of the Mutualism with Sea Anemones. Genome Biology and Evolution, 2019, 11, 869-882.	2.5	34
22	Modeling Edar expression reveals the hidden dynamics of tooth signaling center patterning. PLoS Biology, 2019, 17, e3000064.	5.6	30
23	Magic Traits in Magic Fish: Understanding Color Pattern Evolution Using Reef Fish. Trends in Genetics, 2019, 35, 265-278.	6.7	39
24	Sea anemone and clownfish microbiota diversity and variation during the initial steps of symbiosis. Scientific Reports, 2019, 9, 19491.	3.3	8
25	Developmental and comparative transcriptomic identification of iridophore contribution to white barring in clownfish. Pigment Cell and Melanoma Research, 2019, 32, 391-402.	3.3	47
26	Evolution of Hormonal Mechanisms. , 2019, , 16-22.		0
27	The ancestral retinoic acid receptor was a low-affinity sensor triggering neuronal differentiation. Science Advances, 2018, 4, eaao1261.	10.3	37
28	Teleost Fish-Specific Preferential Retention of Pigmentation Gene-Containing Families After Whole Genome Duplications in Vertebrates. G3: Genes, Genomes, Genetics, 2018, 8, 1795-1806.	1.8	40
29	Complete and rapid reversal of the body color pattern in juveniles of the convict surgeonfish Acanthurus triostegus at Moorea Island (French Polynesia). Coral Reefs, 2018, 37, 31-35.	2.2	7
30	The Evolution of Steroid-liganded Nuclear Receptors. Journal of Steroid Biochemistry and Molecular Biology, 2018, 184, 1-2.	2.5	1
31	Amphioxus functional genomics and the origins of vertebrate gene regulation. Nature, 2018, 564, 64-70.	27.8	224
32	Ontogenetic and phylogenetic simplification during white stripe evolution in clownfishes. BMC Biology, 2018, 16, 90.	3.8	38
33	NR3E receptors in cnidarians: A new family of steroid receptor relatives extends the possible mechanisms for ligand binding. Journal of Steroid Biochemistry and Molecular Biology, 2018, 184, 11-19.	2.5	17
34	Hormonally active phytochemicals from macroalgae: A largely untapped source of ligands to deorphanize nuclear receptors in emerging marine animal models. General and Comparative Endocrinology, 2018, 265, 41-45.	1.8	8
35	Origin of an ancient hormone/receptor couple revealed by resurrection of an ancestral estrogen. Science Advances, 2017, 3, e1601778.	10.3	49
36	Evolution of ligands, receptors and metabolizing enzymes of thyroid signaling. Molecular and Cellular Endocrinology, 2017, 459, 5-13.	3.2	53

#	Article	IF	CITATIONS
37	Evolution of Nuclear Receptors and Ligand Signaling. Current Topics in Developmental Biology, 2017, 125, 1-38.	2.2	34
38	Lineage-specific duplication of amphioxus retinoic acid degrading enzymes (CYP26) resulted in sub-functionalization of patterning and homeostatic roles. BMC Evolutionary Biology, 2017, 17, 24.	3.2	20
39	Fish larval recruitment to reefs is a thyroid hormone-mediated metamorphosis sensitive to the pesticide chlorpyrifos. ELife, 2017, 6, .	6.0	58
40	New Insights into Vertebrate Thyroid Hormone Receptor Evolution. Nuclear Receptor Research, 2017, 4, .	2.5	3
41	In Vivo Screening Using Transgenic Zebrafish Embryos Reveals New Effects of HDAC Inhibitors Trichostatin A and Valproic Acid on Organogenesis. PLoS ONE, 2016, 11, e0149497.	2.5	24
42	Evolutionary diversification of retinoic acid receptor ligand-binding pocket structure by molecular tinkering. Royal Society Open Science, 2016, 3, 150484.	2.4	9
43	Thyroglobulin Represents a Novel Molecular Architecture of Vertebrates. Journal of Biological Chemistry, 2016, 291, 16553-16566.	3.4	38
44	Identification, Evolution and Expression of an Insulin-Like Peptide in the Cephalochordate Branchiostoma lanceolatum. PLoS ONE, 2015, 10, e0119461.	2.5	20
45	Evolution of retinoic acid receptors in chordates: insights from three lamprey species, Lampetra fluviatilis, Petromyzon marinus, and Lethenteron japonicum. EvoDevo, 2015, 6, 18.	3.2	6
46	Altered retinoic acid signalling underpins dentition evolution. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142764.	2.6	19
47	Nuclear Receptors and Development: From drugs to embryos and back again. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 71-72.	1.9	1
48	Thyroid Hormones: A Triple-Edged Sword for Life History Transitions. Current Biology, 2015, 25, R344-R347.	3.9	29
49	Tinkering signaling pathways by gain and loss of protein isoforms: the case of the EDA pathway regulator EDARADD. BMC Evolutionary Biology, 2015, 15, 129.	3.2	9
50	RAR/RXR binding dynamics distinguish pluripotency from differentiation associated cis-regulatory elements. Nucleic Acids Research, 2015, 43, 4833-4854.	14.5	71
51	Botanical compounds and their regulation of nuclear receptor action: The case of traditional Chinese medicine. Molecular and Cellular Endocrinology, 2015, 401, 221-237.	3.2	28
52	ZebRA: An overview of retinoic acid signaling during zebrafish development. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 73-83.	1.9	46
53	A Mollusk Retinoic Acid Receptor (RAR) Ortholog Sheds Light on the Evolution of Ligand Binding. Endocrinology, 2014, 155, 4275-4286.	2.8	43
54	Halogenated Bisphenol-A Analogs Act as Obesogens in Zebrafish Larvae (Danio rerio). Toxicological Sciences, 2014, 139, 48-58.	3.1	112

#	Article	IF	CITATIONS
55	Evolution of Retinoic Acid Receptors and Retinoic Acid Signaling. Sub-Cellular Biochemistry, 2014, 70, 55-73.	2.4	39
56	The ectodysplasin pathway: from diseases to adaptations. Trends in Genetics, 2014, 30, 24-31.	6.7	103
57	Stability versus diversity of the dentition during evolutionary radiation in cyprinine fish. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132688.	2.6	12
58	Life-History Evolution: At the Origins of Metamorphosis. Current Biology, 2014, 24, R159-R161.	3.9	34
59	Retinoic Acid Receptor Subtype-Specific Transcriptotypes in the Early Zebrafish Embryo. Molecular Endocrinology, 2014, 28, 260-272.	3.7	18
60	Thyroid hormone and retinoid X receptor function and expression during sea lamprey (Petromyzon) Tj ETQq0 0 0	OrgBT /Ov	erlock 10 Tf 5
61	Evolution of bilaterian central nervous systems: a single origin?. EvoDevo, 2013, 4, 27.	3.2	139
62	Thyroid Hormones and Postembryonic Development in Amniotes. Current Topics in Developmental Biology, 2013, 103, 397-425.	2.2	38
63	Molecular adaptation and resilience of the insect's nuclear receptor USP. BMC Evolutionary Biology, 2012, 12, 199.	3.2	12
64	Programmed Genome Rearrangements: In Lampreys, All Cells Are Not Equal. Current Biology, 2012, 22, R641-R643.	3.9	5
65	Retinoic acid expands the evolutionarily reduced dentition of zebrafish. FASEB Journal, 2012, 26, 5014-5024.	0.5	26
66	Origin and evolution of the ligand-binding ability of nuclear receptors. Molecular and Cellular Endocrinology, 2011, 334, 21-30.	3.2	90
67	The Origins and Evolution of Vertebrate Metamorphosis. Current Biology, 2011, 21, R726-R737.	3.9	248
68	Amphioxus spawning behavior in an artificial seawater facility., 2011, 316B, 263-275.		35
69	Evolution of Nuclear Retinoic Acid Receptor Alpha (RARÂ) Phosphorylation Sites. Serine Gain Provides Fine-Tuned Regulation. Molecular Biology and Evolution, 2011, 28, 2125-2137.	8.9	23
70	Genome-wide in Silico Identification of New Conserved and Functional Retinoic Acid Receptor Response Elements (Direct Repeats Separated by 5 bp). Journal of Biological Chemistry, 2011, 286, 33322-33334.	3.4	84
71	Evolution of Retinoid and Steroid Signaling: Vertebrate Diversification from an Amphioxus Perspective. Genome Biology and Evolution, 2011, 3, 985-1005.	2.5	42
72	From carrot to clinic: an overview of the retinoic acid signaling pathway. Cellular and Molecular Life Sciences, 2010, 67, 1423-1445.	5.4	274

#	Article	IF	CITATIONS
73	Evolutionary Trends of the Pharyngeal Dentition in Cypriniformes (Actinopterygii: Ostariophysi). PLoS ONE, 2010, 5, e11293.	2.5	50
74	Active Metabolism of Thyroid Hormone During Metamorphosis of Amphioxus. Integrative and Comparative Biology, 2010, 50, 63-74.	2.0	39
75	Patterning by heritage in mouse molar row development. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15497-15502.	7.1	84
76	Retinoic acid signaling targets Hox genes during the amphioxus gastrula stage: Insights into early anterior–posterior patterning of the chordate body plan. Developmental Biology, 2010, 338, 98-106.	2.0	53
77	Formation of oral and pharyngeal dentition in teleosts depends on differential recruitment of retinoic acid signaling. FASEB Journal, 2010, 24, 3298-3309.	0.5	32
78	Distinct Impacts of Eda and Edar Loss of Function on the Mouse Dentition. PLoS ONE, 2009, 4, e4985.	2.5	50
79	Independent elaboration of steroid hormone signaling pathways in metazoans. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11913-11918.	7.1	163
80	Rev-erbα2 mRNA Encodes a Stable Protein with a Potential Role in Circadian Clock Regulation. Molecular Endocrinology, 2009, 23, 630-639.	3.7	7
81	Structural and Evolutionary Innovation of the Heterodimerization Interface between USP and the Ecdysone Receptor ECR in Insects. Molecular Biology and Evolution, 2009, 26, 753-768.	8.9	45
82	Effect of <i>eda</i> Loss of Function on Upper Jugal Tooth Morphology. Anatomical Record, 2009, 292, 299-308.	1.4	30
83	Crystal structure of the ligandâ€binding domain of the retinoid X receptor from the ascidian polyandrocarpa misakiensis. Proteins: Structure, Function and Bioinformatics, 2009, 74, 538-542.	2.6	5
84	Complete mitochondrial genomes defining two distinct lancelet species in the West Pacific Ocean. Marine Biology Research, 2009, 5, 278-285.	0.7	14
85	Nuclear hormone receptor signaling in amphioxus. Development Genes and Evolution, 2008, 218, 651-665.	0.9	42
86	The amphioxus genome enlightens the evolution of the thyroid hormone signaling pathway. Development Genes and Evolution, 2008, 218, 667-680.	0.9	59
87	The history of a developmental stage: Metamorphosis in chordates. Genesis, 2008, 46, 657-672.	1.6	74
88	Retinoic acid signaling in development: Tissueâ€specific functions and evolutionary origins. Genesis, 2008, 46, 640-656.	1.6	112
89	The "street light syndromeâ€, or how protein taxonomy can bias experimental manipulations. BioEssays, 2008, 30, 349-357.	2.5	16
90	An amphioxus orthologue of the estrogen receptor that does not bind estradiol: Insights into estrogen receptor evolution. BMC Evolutionary Biology, 2008, 8, 219.	3.2	71

#	Article	IF	CITATIONS
91	Amphioxus Postembryonic Development Reveals the Homology of Chordate Metamorphosis. Current Biology, 2008, 18, 825-830.	3.9	132
92	Annotation of Tribolium nuclear receptors reveals an increase in evolutionary rate of a network controlling the ecdysone cascade. Insect Biochemistry and Molecular Biology, 2008, 38, 416-429.	2.7	56
93	The evolution of the ligand/receptor couple: A long road from comparative endocrinology to comparative genomics. Molecular and Cellular Endocrinology, 2008, 293, 5-16.	3.2	43
94	Nuclear receptors: at the heart of the biological crosstalk between metabolism and circadian rhythm. Expert Review of Endocrinology and Metabolism, 2008, 3, 411-414.	2.4	1
95	The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Research, 2008, 18, 1100-1111.	5.5	456
96	Conserved Features and Evolutionary Shifts of the EDA Signaling Pathway Involved in Vertebrate Skin Appendage Development. Molecular Biology and Evolution, 2008, 25, 912-928.	8.9	42
97	Unexpected Novel Relational Links Uncovered by Extensive Developmental Profiling of Nuclear Receptor Expression. PLoS Genetics, 2007, 3, e188.	3.5	188
98	Insights into spawning behavior and development of the european amphioxus (Branchiostoma) Tj ETQq0 0 0 rgBT 308B, 484-493.	Overlock	2 10 Tf 50 40 103
99	Structural and functional characterization of a novel type of ligand-independent RXR-USP receptor. EMBO Journal, 2007, 26, 3770-3782.	7.8	120
100	Overview of Nomenclature of Nuclear Receptors. Pharmacological Reviews, 2006, 58, 685-704.	16.0	540
101	Gene Loss and Evolutionary Rates Following Whole-Genome Duplication in Teleost Fishes. Molecular Biology and Evolution, 2006, 23, 1808-1816.	8.9	352
102	A retinoic acid-Hox hierarchy controls both anterior/posterior patterning and neuronal specification in the developing central nervous system of the cephalochordate amphioxus. Developmental Biology, 2006, 296, 190-202.	2.0	116
103	Retinoic acid signaling and the evolution of chordates. International Journal of Biological Sciences, 2006, 2, 38-47.	6.4	136
104	Conserved RARE localization in amphioxusHox clusters and implications forHox code evolution in the vertebrate neural crest. Developmental Dynamics, 2006, 235, 1522-1531.	1.8	55
105	Neofunctionalization in Vertebrates: The Example of Retinoic Acid Receptors. PLoS Genetics, 2006, 2, e102.	3.5	108
106	International Union of Pharmacology. LXVI. Orphan Nuclear Receptors. Pharmacological Reviews, 2006, 58, 798-836.	16.0	195
107	Explosive Lineage-Specific Expansion of the Orphan Nuclear Receptor HNF4 in Nematodes. Journal of Molecular Evolution, 2005, 60, 577-586.	1.8	100
108	Retinoic acid signaling acts via Hox1 to establish the posterior limit of the pharynx in the chordate amphioxus. Development (Cambridge), 2005, 132, 61-73.	2.5	96

#	Article	IF	CITATIONS
109	Phylogenetic Dating and Characterization of Gene Duplications in Vertebrates: The Cartilaginous Fish Reference. Molecular Biology and Evolution, 2004, 21, 580-586.	8.9	70
110	Evolutionary Genomics of Nuclear Receptors: From Twenty-Five Ancestral Genes to Derived Endocrine Systems. Molecular Biology and Evolution, 2004, 21, 1923-1937.	8.9	319
111	Retinoic acid influences anteroposterior positioning of epidermal sensory neurons and their gene expression in a developing chordate (amphioxus). Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10320-10325.	7.1	75
112	Principles for modulation of the nuclear receptor superfamily. Nature Reviews Drug Discovery, 2004, 3, 950-964.	46.4	1,019
113	Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature, 2004, 431, 946-957.	27.8	1,801
114	Molecular cloning and developmental expression patterns of thyroid hormone receptors and T3 target genes in the turbot (Scophtalmus maximus) during post-embryonic development. General and Comparative Endocrinology, 2004, 135, 345-357.	1.8	65
115	Preliminary observations on the spawning conditions of the European amphioxus (Branchiostoma) Tj $ETQq1\ 1\ 0$.	784314 rg 1.4	gBT/Overloci
116	The orphan COUP-TF nuclear receptors are markers for neurogenesis from cnidarians to vertebrates. Developmental Biology, 2004, 275, 104-123.	2.0	58
117	The evolution of the nuclear receptor superfamily. Essays in Biochemistry, 2004, 40, 11-26.	4.7	169
118	Analysis of Lamprey and Hagfish Genes Reveals a Complex History of Gene Duplications During Early Vertebrate Evolution. Molecular Biology and Evolution, 2002, 19, 1440-1450.	8.9	168
119	The retinoic acid signaling pathway regulates anterior/posterior patterning in the nerve cord and pharynx of amphioxus, a chordate lacking neural crest. Development (Cambridge), 2002, 129, 2905-16.	2.5	32
120	How many nuclear hormone receptors are there in the human genome?. Trends in Genetics, 2001, 17, 554-556.	6.7	209
121	Ligand binding and nuclear receptor evolution. BioEssays, 2000, 22, 717-727.	2.5	244
122	Genomic organization of the human thyroid hormone receptor \hat{l}_{\pm} (c-erbA-1) gene. Nucleic Acids Research, 1991, 19, 1105-1112.	14.5	94
123	Do colour-morphs of an amphidromous goby represent different species? Taxonomy of Lentipes (Gobiiformes) from Japan and Palawan, Philippines, with phylogenomic approaches. Systematics and Biodiversity, 0 , $1-33$.	1.2	4