
David W Galbraith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9105768/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Gene Expression Map of the Arabidopsis Root. Science, 2003, 302, 1956-1960.	12.6	1,161
2	Gene Expression Profiles during the Initial Phase of Salt Stress in Rice. Plant Cell, 2001, 13, 889-905.	6.6	850
3	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	2.9	766
4	Guidelines for the use of flow cytometry and cell sorting in immunological studies [*] . European Journal of Immunology, 2017, 47, 1584-1797.	2.9	505
5	Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Molecular Biology, 2002, 48, 551-573.	3.9	503
6	Systemic Endopolyploidy in <i>Arabidopsis thaliana</i> . Plant Physiology, 1991, 96, 985-989.	4.8	425
7	Green-fluorescent protein as a new vital marker in plant cells. Plant Journal, 1995, 8, 777-784.	5.7	375
8	RNA-sequencing from single nuclei. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19802-19807.	7.1	321
9	Cell type–specific expression profiling in plants via cell sorting of protoplasts from fluorescent reporter lines. Nature Methods, 2005, 2, 615-619.	19.0	276
10	Reference standards for determination of DNA content of plant nuclei. American Journal of Botany, 1999, 86, 609-613.	1.7	247
11	SYMBIODINIUM (PYRRHOPHYTA) GENOME SIZES (DNA CONTENT) ARE SMALLEST AMONG DINOFLAGELLATES1. Journal of Phycology, 2005, 41, 880-886.	2.3	214
12	Immunopurification of Polyribosomal Complexes of Arabidopsis for Global Analysis of Gene Expression. Plant Physiology, 2005, 138, 624-635.	4.8	214
13	Green-fluorescent protein fusions for efficient characterization of nuclear targeting. Plant Journal, 1997, 11, 573-586.	5.7	194
14	Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1779-1784.	7.1	194
15	Plant systems biology comes of age. Trends in Plant Science, 2008, 13, 165-171.	8.8	165
16	Nuclear Dynamics in <i>Arabidopsis thaliana</i> . Molecular Biology of the Cell, 2000, 11, 2733-2741.	2.1	124
17	AtSAP18, An Orthologue of Human SAP18, is Involved in the Regulation of Salt Stress and Mediates Transcriptional Repression in Arabidopsis. Plant Molecular Biology, 2006, 60, 241-257.	3.9	122
18	Global Characterization of Cell-Specific Gene Expression through Fluorescence-Activated Sorting of Nuclei Â. Plant Physiology, 2008, 147, 30-40.	4.8	114

#	Article	IF	CITATIONS
19	Microarray-based analysis of gene expression in very large gene families: the cytochrome P450 gene superfamily of Arabidopsis thaliana. Gene, 2001, 272, 61-74.	2.2	111
20	A Spatiotemporal DNA Endoploidy Map of the Arabidopsis Root Reveals Roles for the Endocycle in Root Development and Stress Adaptation. Plant Cell, 2018, 30, 2330-2351.	6.6	107
21	Microfluorimetric quantitation of cellulose biosynthesis by plant protoplasts using Calcofluor White. Physiologia Plantarum, 1981, 53, 111-116.	5.2	97
22	Comparison of RNA Expression Profiles Based on Maize Expressed Sequence Tag Frequency Analysis and Micro-Array Hybridization. Plant Physiology, 2002, 128, 896-910.	4.8	96
23	Silica breaks through in plants. Nature Nanotechnology, 2007, 2, 272-273.	31.5	95
24	Comparison of the contributions of the nuclear and cytoplasmic compartments to global gene expression in human cells. BMC Genomics, 2007, 8, 340.	2.8	78
25	GLOBAL STUDIES OF CELL TYPE-SPECIFIC GENE EXPRESSION IN PLANTS. Annual Review of Plant Biology, 2006, 57, 451-475.	18.7	70
26	The effects of inhibitors of cell wall synthesis on tobacco protoplast development. Physiologia Plantarum, 1982, 55, 25-30.	5.2	69
27	Cell type-specific characterization of nuclear DNA contents within complex tissues and organs. Plant Methods, 2005, 1, 7.	4.3	68
28	Flow sorting and culture of plant protoplasts. Physiologia Plantarum, 1984, 60, 43-52.	5.2	67
29	Analysis of Higher Plants by Flow Cytometry and Cell Sorting. International Review of Cytology, 1989, 116, 165-228.	6.2	67
30	BZU2/ZmMUTE controls symmetrical division of guard mother cell and specifies neighbor cell fate in maize. PLoS Genetics, 2019, 15, e1008377.	3.5	64
31	Analysis of the initial stages of plant protoplast development using 33258 Hoechst: reactivation of the cell cycle. Physiologia Plantarum, 1981, 51, 380-386.	5.2	60
32	Simultaneous flow cytometric quantification of plant nuclear DNA contents over the full range of described angiosperm 2C values. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2009, 75A, 692-698.	1.5	57
33	The genome of Populus alba x Populus tremula var. glandulosa clone 84K. DNA Research, 2019, 26, 423-431.	3.4	56
34	Meiotically Stable Natural Epialleles of Sadhu, a Novel Arabidopsis Retroposon. PLoS Genetics, 2006, 2, e36.	3.5	55
35	Flow cytometric characterization of the chlorophyll contents and size distributions of plant protoplasts. Cytometry, 1988, 9, 75-83.	1.8	54
36	Factors governing the flow cytometric analysis and sorting of large biological particles. Cytometry, 1987, 8, 60-70.	1.8	52

#	Article	IF	CITATIONS
37	Characterization of the targeted nuclear accumulation of GFP within the cells of transgenic plants. Plant Journal, 1997, 12, 685-696.	5.7	51
38	Selection of Somatic Hybrid Plants in Nicotiana Through Fluorescence-Activated Sorting of Protoplasts. Nature Biotechnology, 1985, 3, 811-816.	17.5	50
39	DNA Microarray Analyses in Higher Plants. OMICS A Journal of Integrative Biology, 2006, 10, 455-473.	2.0	40
40	Flow cytometric analysis using digital signal processing. Cytometry, 1995, 20, 102-117.	1.8	38
41	Chapter 1 Flow Cytometric Analysis of Transgene Expression in Higher Plants: Green-Fluorescent Protein. Methods in Cell Biology, 1995, 50, 3-14.	1.1	37
42	Microarray-based survey of repetitive genomic sequences in Vicia spp. Plant Molecular Biology, 2001, 45, 229-244.	3.9	37
43	Development and evaluation of a high-throughput, low-cost genotyping platform based on oligonucleotide microarrays in rice. Plant Methods, 2008, 4, 13.	4.3	37
44	Chapter 48 Flow Cytometric Analysis of Plant Genomes. Methods in Cell Biology, 1990, 33, 549-562.	1.1	35
45	Applicationâ€based guidelines for best practices in plant flow cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2022, 101, 749-781.	1.5	34
46	Genome size variation in the Fagaceae and its implications for trees. Tree Genetics and Genomes, 2014, 10, 977-988.	1.6	30
47	Measuring genome size of desert plants using dry seeds. Botany, 2009, 87, 127-135.	1.0	29
48	Automated particle classification based on digital acquisition and analysis of flow cytometric pulse waveforms. Cytometry, 1996, 24, 330-339.	1.8	27
49	Global Analysis of Cell Type-Specific Gene Expression. Comparative and Functional Genomics, 2003, 4, 208-215.	2.0	27
50	From mouse to mouseâ€ear cress: Nanomaterials as vehicles in plant biotechnology. Exploration, 2021, 1, 9-20.	11.0	27
51	Transcriptome analysis reveals key genes involved in the regulation of nicotine biosynthesis at early time points after topping in tobacco (Nicotiana tabacum L.). BMC Plant Biology, 2020, 20, 30.	3.6	22
52	Nuclear expressed sequence tag (NEST) analysis: A novel means to study transcription through amplification of nuclear RNA. Cytometry, 1998, 33, 460-468.	1.8	20
53	Chapter 47 Isolation and Flow Cytometric Characterization of Plant Protoplasts. Methods in Cell Biology, 1990, 33, 527-547.	1.1	19
54	Cytometry and plant sciences: A personal retrospective. Cytometry, 2004, 58A, 37-44.	1.8	19

#	Article	IF	CITATIONS
55	Multiparametric Analysis, Sorting, and Transcriptional Profiling of Plant Protoplasts and Nuclei According to Cell Type. Methods in Molecular Biology, 2011, 699, 407-429.	0.9	18
56	Chromosomeâ€level <i>Thlaspi arvense</i> genome provides new tools for translational research and for a newly domesticated cash cover crop of the cooler climates. Plant Biotechnology Journal, 2022, 20, 944-963.	8.3	18
57	Characterization of the targeted nuclear accumulation of GFP within the cells of transgenic plants. Plant Journal, 1997, 12, 685-696.	5.7	16
58	Best practices in plant cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 311-317.	1.5	16
59	Flow cytometry and fluorescence-activated cell sorting in plants: the past, present, and future. Biomedica, 2010, 30, 65.	0.7	15
60	A high-density quantitative nuclease protection microarray platform for high throughput analysis of gene expression. Journal of Biotechnology, 2011, 154, 68-75.	3.8	15
61	Flow Cytometry and Sorting in Arabidopsis. Methods in Molecular Biology, 2014, 1062, 509-537.	0.9	14
62	Fluorescence activated cell sorting—A selective tool for plant cell isolation and analysis. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2022, 101, 725-736.	1.5	13
63	Chapter 31 Flow Cytometry and Sorting of Plant Protoplasts and Cells. Methods in Cell Biology, 1994, 42 Pt B, 539-561.	1.1	12
64	[26] Flow cytometric analysis of transgene expression in higher plants: Green fluorescent protein. Methods in Enzymology, 1999, 302, 296-315.	1.0	11
65	Integrative Flow Cytometric and Microarray Approaches for Use in Transcriptional Profiling. , 2004, 263, 259-280.		11
66	The daunting process of MIAME. Nature, 2006, 444, 31-31.	27.8	11
67	Functional Analysis of the Gossypium arboreum Genome. Plant Molecular Biology Reporter, 2010, 28, 334-343.	1.8	11
68	Large Particle Sorting. , 2000, , 293-317.		11
69	The Genomes of All Angiosperms: A Call for a Coordinated Global Census. Journal of Botany, 2011, 2011, 1-10.	1.2	10
70	Best practices in the flow cytometry of microalgae. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 359-364.	1.5	10
71	Biosynthesis, processing and targeting of the G-protein of vesicular stomatitis virus in tobacco protoplasts. Planta, 1992, 186, 324-36.	3.2	9
72	Endoreduplicative standards for calibration of flow cytometric Câ€Value measurements. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2014, 85, 368-374.	1.5	9

#	Article	IF	CITATIONS
73	High-Throughput Monitoring of Plant Nuclear DNA Contents Via Flow Cytometry. Methods in Molecular Biology, 2012, 918, 311-325.	0.9	8
74	The maize single-nucleus transcriptome comprehensively describes signaling networks governing movement and development of grass stomata. Plant Cell, 2022, , .	6.6	8
75	The Rainbow of Fluorescent Proteins. Methods in Cell Biology, 2004, 75, 153-169.	1.1	7
76	Performance analysis of a dual-buffer architecture for digital flow cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2005, 66A, 109-118.	1.5	6
77	Structure-based prediction of protein–protein interactions between GhWlim5 Domain1 and GhACTIN-1 proteins: a practical evidence with improved fibre strength. Journal of Plant Biochemistry and Biotechnology, 2020, 30, 373.	1.7	6
78	Flow Cytometry and Sorting in Arabidopsis. Methods in Molecular Biology, 2021, 2200, 255-294.	0.9	5
79	RNA interference-mediated gene knockdown within specific cell types. Plant Molecular Biology, 2012, 80, 169-176.	3.9	4
80	The callus associated protein (CAP) gene ofNicotiana tabacum: Isolation, characterization, and evidence for possible function as a transcriptional factor. In Vitro Cellular and Developmental Biology - Plant, 1994, 30, 44-54.	2.1	3
81	Flow cytometry and single nucleus sorting for Creâ€based analysis of changes in transcriptional states. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2016, 89, 430-442.	1.5	3
82	Validation of crowdâ€sourced plant genome size measurements. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2022, 101, 703-706.	1.5	2
83	Challenges and solutions in cytometric measurements of nonâ€mammalian species. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2014, 85, 831-832.	1.5	1
84	Digital Data Acquisition and Processing. Current Protocols in Cytometry, 2015, 71, 10.19.1-10.19.13.	3.7	1
85	Nuclear Cytometry: Analysis of the Patterns of DNA Synthesis and Transcription Using Flow Cytometry, Confocal Microscopy, and RNA Sequencing. Methods in Molecular Biology, 2018, 1678, 371-392.	0.9	1
86	Shapiro's Laws Revisited: Conventional and Unconventional Cytometry at <scp>CYTO2020</scp> . Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 129-132.	1.5	0
87	The Wonderland of Global Expression Profiling. Biotechnology in Agriculture and Forestry, 2009, , 251-266.	0.2	Ο