
Gianluca Campana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9105285/publications.pdf Version: 2024-02-01

CIANULICA CAMDANA

#	Article	IF	CITATIONS
1	Mechanisms Underlying Directional Motion Processing and Form-Motion Integration Assessed with Visual Perceptual Learning. Vision (Switzerland), 2022, 6, 29.	1.2	1
2	Spatial and Temporal Selectivity of Translational Glass Patterns Assessed With the Tilt After-Effect. I-Perception, 2021, 12, 204166952110179.	1.4	4
3	Cognitive exergame training and transcranial random noise stimulation effects on executive control in healthy young adults Neuropsychology, 2021, 35, 568-580.	1.3	7
4	Speech Fluency Improvement in Developmental Stuttering Using Non-invasive Brain Stimulation: Insights From Available Evidence. Frontiers in Human Neuroscience, 2021, 15, 662016.	2.0	6
5	Temporal characteristics of global form perception in translational and circular Glass patterns. Vision Research, 2021, 187, 102-109.	1.4	3
6	Visual Short-Term Memory for Coherent and Sequential Motion: A rTMS Investigation. Brain Sciences, 2021, 11, 1471.	2.3	3
7	Probabilistic rejection templates in visual working memory. Cognition, 2020, 196, 104075.	2.2	17
8	Investigating the Interaction Between Form and Motion Processing: A Review of Basic Research and Clinical Evidence. Frontiers in Psychology, 2020, 11, 566848.	2.1	13
9	The neural mechanisms underlying directional and apparent circular motion assessed with repetitive transcranial magnetic stimulation (rTMS). Neuropsychologia, 2020, 149, 107656.	1.6	5
10	Does physical exercise and congruent visual stimulation enhance perceptual learning?. Ophthalmic and Physiological Optics, 2020, 40, 680-691.	2.0	6
11	Transcranial random noise stimulation (tRNS): a wide range of frequencies is needed for increasing cortical excitability. Scientific Reports, 2019, 9, 15150.	3.3	49
12	Modulatory mechanisms underlying high-frequency transcranial random noise stimulation (hf-tRNS): A combined stochastic resonance and equivalent noise approach. Brain Stimulation, 2019, 12, 967-977.	1.6	54
13	Differential effects of high-frequency transcranial random noise stimulation (hf-tRNS) on contrast sensitivity and visual acuity when combined with a short perceptual training in adults with amblyopia. Neuropsychologia, 2018, 114, 125-133.	1.6	48
14	The effect of experience and of dots' density and duration on the detection of coherent motion in dogs. Animal Cognition, 2018, 21, 651-660.	1.8	4
15	Rapid response to dexamethasone intravitreal implant in diabetic macular edema. European Journal of Ophthalmology, 2018, 28, 74-79.	1.3	6
16	The neural basis of form and form-motion integration from static and dynamic translational Class patterns: A rTMS investigation. NeuroImage, 2017, 157, 555-560.	4.2	17
17	Set size manipulations reveal the boundary conditions of perceptual ensemble learning. Vision Research, 2017, 140, 144-156.	1.4	19
18	Learning features in a complex and changing environment: A distribution-based framework for visual attention and vision in general. Progress in Brain Research, 2017, 236, 97-120.	1.4	18

GIANLUCA CAMPANA

#	Article	IF	CITATIONS
19	Dogs are not better than humans at detecting coherent motion. Scientific Reports, 2017, 7, 11259.	3.3	4
20	Representing Color Ensembles. Psychological Science, 2017, 28, 1510-1517.	3.3	55
21	Rapid learning of visual ensembles. Journal of Vision, 2017, 17, 21.	0.3	30
22	Representing color ensembles: Mapping internal probability density functions with attentional priming. Journal of Vision, 2017, 17, 1085.	0.3	0
23	Binding feature distributions to locations and to other features. Journal of Vision, 2017, 17, 78.	0.3	Ο
24	The application of online transcranial random noise stimulation and perceptual learning in the improvement of visual functions in mild myopia. Neuropsychologia, 2016, 89, 225-231.	1.6	39
25	Opposite effects of high- and low-frequency transcranial random noise stimulation probed with visual motion adaptation. Scientific Reports, 2016, 6, 38919.	3.3	28
26	Building ensemble representations: How the shape of preceding distractor distributions affects visual search. Cognition, 2016, 153, 196-210.	2.2	64
27	TMS reveals flexible use of form and motion cues in biological motion perception. Neuropsychologia, 2016, 84, 193-197.	1.6	18
28	Editorial: Improving visual deficits with perceptual learning. Frontiers in Psychology, 2015, 6, 491.	2.1	8
29	Probing the involvement of the earliest levels of cortical processing in motion extrapolation with rapid forms of visual motion priming and adaptation. Attention, Perception, and Psychophysics, 2015, 77, 603-612.	1.3	11
30	Improvement of uncorrected visual acuity and contrast sensitivity with perceptual learning and transcranial random noise stimulation in individuals with mild myopia. Frontiers in Psychology, 2014, 5, 1234.	2.1	51
31	Improving visual functions in adult amblyopia with combined perceptual training and transcranial random noise stimulation (tRNS): a pilot study. Frontiers in Psychology, 2014, 5, 1402.	2.1	59
32	Improving myopia via perceptual learning: is training with lateral masking the only (or the most) efficacious technique?. Attention, Perception, and Psychophysics, 2014, 76, 2485-2494.	1.3	25
33	Common (and multiple) neural substrates for static and dynamic motion after-effects: A rTMS investigation. Cortex, 2013, 49, 2590-2594.	2.4	18
34	Opposing roles of sensory and parietal cortices in awareness in a bistable motion illusion. Neuropsychologia, 2013, 51, 2479-2484.	1.6	10
35	Illusory Speed is Retained in Memory during Invisible Motion. I-Perception, 2013, 4, 180-191.	1.4	32
36	Interactions between motion and form processing in the human visual system. Frontiers in Computational Neuroscience, 2013, 7, 65.	2.1	40

GIANLUCA CAMPANA

#	Article	IF	CITATIONS
37	The origin of the audiovisual bounce inducing effect: A TMS study. Neuropsychologia, 2012, 50, 1478-1482.	1.6	23
38	The temporal course of recovery from brief (sub-second) adaptations to spatial contrast. Vision Research, 2012, 62, 116-124.	1.4	19
39	Reducing Crowding by Weakening Inhibitory Lateral Interactions in the Periphery with Perceptual Learning. PLoS ONE, 2011, 6, e25568.	2.5	47
40	Illusory Contours over Pathological Retinal Scotomas. PLoS ONE, 2011, 6, e26154.	2.5	8
41	The fastest (and simplest), the earliest: The locus of processing of rapid forms of motion aftereffect. Neuropsychologia, 2011, 49, 2929-2934.	1.6	23
42	Implied motion from static photographs influences the perceived position of stationary objects. Vision Research, 2011, 51, 187-194.	1.4	30
43	The effect of spatial orientation on detecting motion trajectories in noise. Vision Research, 2011, 51, 2077-2084.	1.4	6
44	Detection of first- and second-order coherent motion in blindsight. Experimental Brain Research, 2011, 214, 261-271.	1.5	14
45	Where perception meets memory: A review of repetition priming in visual search tasks. Attention, Perception, and Psychophysics, 2010, 72, 5-18.	1.3	323
46	The role of high-level visual areas in short- and longer-lasting forms of neural plasticity. Neuropsychologia, 2010, 48, 3069-3079.	1.6	17
47	Segmentation by single and combined features involves different contextual influences. Vision Research, 2010, 50, 1065-1073.	1.4	3
48	Attention has memory: priming for the size of the attentional focus. Spatial Vision, 2009, 22, 147-159.	1.4	34
49	Repetition effects of features and spatial position: evidence for dissociable mechanisms. Spatial Vision, 2009, 22, 325-338.	1.4	21
50	Separate motion-detecting mechanisms for first- and second-order patterns revealed by rapid forms of visual motion priming and motion aftereffect. Journal of Vision, 2009, 9, 27-27.	0.3	33
51	Psychophysical and electrophysiological evidence of independent facilitation by collinearity and similarity in texture grouping and segmentation. Vision Research, 2009, 49, 583-593.	1.4	22
52	Sleep and time course of consolidation of visual discrimination skills in patients with narcolepsy–cataplexy. Journal of Sleep Research, 2009, 18, 209-220.	3.2	21
53	Priming of first- and second-order motion: Mechanisms and neural substrates. Neuropsychologia, 2008, 46, 393-398.	1.6	29
54	The motion aftereffect reloaded. Trends in Cognitive Sciences, 2008, 12, 481-487.	7.8	127

GIANLUCA CAMPANA

#	Article	IF	CITATIONS
55	The principle of good continuation in space and time can guide visual search in absence of priming or contextual cueing. Visual Cognition, 2007, 15, 834-853.	1.6	5
56	Left frontal eye field remembers "where―but not "what― Neuropsychologia, 2007, 45, 2340-2345.	1.6	68
57	The role of human extra-striate visual areas V5/MT and V2/V3 in the perception of the direction of global motion: a transcranial magnetic stimulation study. Experimental Brain Research, 2006, 171, 558-562.	1.5	39
58	Long-term effects of MDMA (Ecstasy) on the human central nervous system revealed by visual evoked potentials. Addiction Biology, 2005, 10, 187-195.	2.6	17
59	Visual Area V5/MT Remembers "What" but Not "Where". Cerebral Cortex, 2005, 16, 1766-1770.	2.9	80
60	Attention modulates psychophysical and electrophysiological response to visual texture segmentation in humans. Vision Research, 2005, 45, 2384-2396.	1.4	37
61	Cortical interactions in vision and awareness: hierarchies in reverse. Progress in Brain Research, 2004, 144, 117-130.	1.4	36
62	Perceptual learning modulates electrophysiological and psychophysical response to visual texture segmentation in humans. Neuroscience Letters, 2004, 371, 18-23.	2.1	28
63	Learning in combined-feature search: Specificity to orientation. Perception & Psychophysics, 2003, 65, 1197-1207.	2.3	12
64	Hyper-vision in a patient with central and paracentral vision loss reflects cortical reorganization. Visual Neuroscience, 2003, 20, 501-510.	1.0	10
65	Priming of Motion Direction and Area V5/MT: a Test of Perceptual Memory. Cerebral Cortex, 2002, 12, 663-669.	2.9	148
66	Stimulus-specific dynamics of learning in conjunction search tasks. Visual Cognition, 2001, 8, 145-162.	1.6	7
67	Spatial interactions in simple and combined-feature visual search. Spatial Vision, 1999, 12, 467-483.	1.4	8