
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9104193/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel cancer gene discovery using a forward genetic screen in RCAS-PDGFB-driven gliomas. Neuro-Oncology, 2023, 25, 97-107.	1.2	3
2	Radiosensitizing the Vasculature of Primary Brainstem Gliomas Fails to Improve Tumor Response to Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2022, 112, 771-779.	0.8	7
3	Splicing is an alternate oncogenic pathway activation mechanism in glioma. Nature Communications, 2022, 13, 588.	12.8	17
4	Exploiting 4-1BB immune checkpoint to enhance the efficacy of oncolytic virotherapy for diffuse intrinsic pontine gliomas. JCI Insight, 2022, 7, .	5.0	14
5	A tumor suppressor role for EZH2 in diffuse midline glioma pathogenesis. Acta Neuropathologica Communications, 2022, 10, 47.	5.2	11
6	A novel mouse model of diffuse midline glioma initiated in neonatal oligodendrocyte progenitor cells highlights cellâ€ofâ€origin dependent effects of <scp>H3K27M</scp> . Glia, 2022, 70, 1681-1698.	4.9	15
7	Therapeutic targeting of transcriptional elongation in diffuse intrinsic pontine glioma. Neuro-Oncology, 2021, 23, 1348-1359.	1.2	12
8	A phase I trial of the CDK 4/6 inhibitor palbociclib in pediatric patients with progressive brain tumors: A Pediatric Brain Tumor Consortium study (PBTCâ€042). Pediatric Blood and Cancer, 2021, 68, e28879.	1.5	24
9	Tumour immune landscape of paediatric high-grade gliomas. Brain, 2021, 144, 2594-2609.	7.6	21
10	IMMU-06. DELTA-24-RGD EXPRESSING POSITIVE IMMUNE MODULATORS SHOW ANTI-DIPG EFFECT AND INCREASE TUMOR IMMUNE INFILTRATION. Neuro-Oncology, 2021, 23, i28-i28.	1.2	0
11	Prenatal overexpression of plateletâ€derived growth factor receptor A results in central nervous system hypomyelination. Brain and Behavior, 2021, 11, e2332.	2.2	5
12	Tumor genotype dictates radiosensitization after Atm deletion in primary brainstem glioma models. Journal of Clinical Investigation, 2021, 131, .	8.2	27
13	Platelet-derived growth factor beta is a potent inflammatory driver in paediatric high-grade glioma. Brain, 2021, 144, 53-69.	7.6	43
14	EXTH-63. A NOVEL MOUSE MODEL OF DIFFUSE MIDLINE GLIOMA FOR TARGETED IMMUNOTHERAPY. Neuro-Oncology, 2021, 23, vi177-vi177.	1.2	0
15	ABC Transporter Inhibition Plus Dexamethasone Enhances the Efficacy of Convection Enhanced Delivery in H3.3K27M Mutant Diffuse Intrinsic Pontine Glioma. Neurosurgery, 2020, 86, 742-751.	1.1	8
16	Epigenetic reprogramming and chromatin accessibility in pediatric diffuse intrinsic pontine gliomas: a neural developmental disease. Neuro-Oncology, 2020, 22, 195-206.	1.2	14
17	Integrated Proteogenomic Characterization across Major Histological Types of Pediatric Brain Cancer. Cell, 2020, 183, 1962-1985.e31.	28.9	177
18	Magnetic Resonance Imaging-Guided Focused Ultrasound-Based Delivery of Radiolabeled Copper Nanoclusters to Diffuse Intrinsic Pontine Glioma. ACS Applied Nano Materials, 2020, 3, 11129-11134.	5.0	17

#	Article	IF	CITATIONS
19	Pharmacologic inhibition of lysine-specific demethylase 1 as a therapeutic and immune-sensitization strategy in pediatric high-grade glioma. Neuro-Oncology, 2020, 22, 1302-1314.	1.2	42
20	DIPG-68. ALPHA-THALASSEMIA X-LINKED MENTAL RETARDATION PROTEIN (ATRX) LOSS-OF-FUNCTION IN A MOUSE MODEL OF DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2020, 22, iii300-iii300.	1.2	1
21	Convection-Enhanced Delivery of Enhancer of Zeste Homolog-2 (EZH2) Inhibitor for the Treatment of Diffuse Intrinsic Pontine Glioma. Neurosurgery, 2020, 87, E680-E688.	1.1	11
22	DDEL-11. CONVECTION-ENHANCED DELIVERY OF EZH2 INHIBITOR FOR THE TREATMENT OF DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2020, 22, iii285-iii286.	1.2	0
23	EXTH-67. PHARMACOLOGIC INHIBITION OF LYSINE SPECIFIC DEMETHYLASE-1 (LSD1) AS AN ADJUVANT IMMUNE-SENSITIZATION STRATEGY IN DIFFUSE INTRINSIC PONTINE GLIOMA (DIPG). Neuro-Oncology, 2020, 22, ii102-ii102.	1.2	0
24	Combined targeting of PI3K and MEK effector pathways via CED for DIPG therapy. Neuro-Oncology Advances, 2019, 1, vdz004.	0.7	8
25	Identification of Novel RAS Signaling Therapeutic Vulnerabilities in Diffuse Intrinsic Pontine Cliomas. Cancer Research, 2019, 79, 4026-4041.	0.9	16
26	Radiosensitization by Histone H3 Demethylase Inhibition in Diffuse Intrinsic Pontine Glioma. Clinical Cancer Research, 2019, 25, 5572-5583.	7.0	52
27	HDAC inhibitors to the rescue in sonic hedgehog medulloblastoma. Neuro-Oncology, 2019, 21, 1091-1092.	1.2	4
28	The oncolytic virus Delta-24-RGD elicits an antitumor effect in pediatric glioma and DIPG mouse models. Nature Communications, 2019, 10, 2235.	12.8	96
29	CDK4/6 and diffuse intrinsic pontine glioma - Evaluate at diagnosis?. EBioMedicine, 2019, 44, 16-17.	6.1	4
30	Delta-24-RGD combined with radiotherapy exerts a potent antitumor effect in diffuse intrinsic pontine glioma and pediatric high grade glioma models. Acta Neuropathologica Communications, 2019, 7, 64.	5.2	31
31	ACVR1 R206H cooperates with H3.1K27M in promoting diffuse intrinsic pontine glioma pathogenesis. Nature Communications, 2019, 10, 1023.	12.8	87
32	T2-weighted images are superior to other MR image types for the determination of diffuse intrinsic pontine glioma intratumoral heterogeneity. Child's Nervous System, 2018, 34, 449-455.	1.1	18
33	PDTM-16. AN IMPROVED DIFFUSE INTRINSIC PONTINE GLIOMA MODEL INITIATED IN OLIG2-EXPRESSING PROGENITORS OF THE NEONATAL BRAINSTEM. Neuro-Oncology, 2018, 20, vi207-vi207.	1.2	0
34	PDTM-12. DLX2 TRANSCRIPTIONAL REGULATION OF CENTRAL NERVOUS SYSTEM CELL FATE RELEVANCE TO PEDIATRIC DIFFUSE MIDLINE GLIOMAS WITH HISTONE 3 MUTATIONS. Neuro-Oncology, 2018, 20, vi206-vi206.	1.2	0
35	PDTM-43. THE ROLE OF TUMOR ASSOCIATED MACROPHAGES IN PEDIATRIC HIGH-GRADE GLIOMA. Neuro-Oncology, 2018, 20, vi213-vi213.	1.2	1
36	GENE-06. THE ONCOHISTONE H3.3K27M DRIVES DIFFUSE INTRINSIC PONTINE GLIOMA INDEPENDENT OF FUNCTIONAL EZH2. Neuro-Oncology, 2018, 20, vi103-vi104.	1.2	0

#	Article	IF	CITATIONS
37	CDK4/6 and PDGFRA Signaling as Therapeutic Targets in Diffuse Intrinsic Pontine Glioma. Frontiers in Oncology, 2018, 8, 191.	2.8	18
38	Pediatric high-grade glioma: biologically and clinically in need of new thinking. Neuro-Oncology, 2017, 19, now101.	1.2	217
39	Histone H3.3K27M Represses <i>p16</i> to Accelerate Gliomagenesis in a Murine Model of DIPG. Molecular Cancer Research, 2017, 15, 1243-1254.	3.4	120
40	A phase I study of perifosine with temsirolimus for recurrent pediatric solid tumors. Pediatric Blood and Cancer, 2017, 64, e26409.	1.5	66
41	A phase I/Ib trial targeting the Pi3k/Akt pathway using perifosine: <scp>L</scp> ongâ€ŧerm progressionâ€free survival of patients with resistant neuroblastoma. International Journal of Cancer, 2017, 140, 480-484.	5.1	41
42	Pre-Clinical Study of Panobinostat in Xenograft and Genetically Engineered Murine Diffuse Intrinsic Pontine Glioma Models. PLoS ONE, 2017, 12, e0169485.	2.5	130
43	A phase I study of single-agent perifosine for recurrent or refractory pediatric CNS and solid tumors. PLoS ONE, 2017, 12, e0178593.	2.5	38
44	Vamorolone, a dissociative steroidal compound, reduces pro-inflammatory cytokine expression in glioma cells and increases activity and survival in a murine model of cortical tumor. Oncotarget, 2017, 8, 9366-9374.	1.8	9
45	HG-63NOVEL DISSOCIATIVE STEROIDS FOR TREATMENT OF EDEMA IN CHILDHOOD INTRACRANIAL BRAIN TUMORS. Neuro-Oncology, 2016, 18, iii62.2-iii62.	1.2	0
46	PDTB-17. PRE-CLINICAL EVALUATION OF TRAMETINIB IN AÂGENETICALLY ENGINEERED MOUSE MODEL OF DIPG. Neuro-Oncology, 2016, 18, vi153-vi153.	1.2	0
47	A Novel Mouse Model of Diffuse Intrinsic Pontine Glioma Initiated in Pax3-Expressing Cells. Neoplasia, 2016, 18, 60-70.	5.3	40
48	ABCG2 and ABCB1 Limit the Efficacy of Dasatinib in a PDGF-B–Driven Brainstem Glioma Model. Molecular Cancer Therapeutics, 2016, 15, 819-829.	4.1	49
49	Diffuse Intrinsic Pontine Glioma. Journal of Child Neurology, 2016, 31, 1377-1385.	1.4	31
50	Tumor location, but not H3.3K27M, significantly influences the blood–brain-barrier permeability in a genetic mouse model of pediatric high-grade glioma. Journal of Neuro-Oncology, 2016, 126, 243-251.	2.9	49
51	Pre-Clinical Models of Diffuse Intrinsic Pontine Clioma. Frontiers in Oncology, 2015, 5, 172.	2.8	36
52	Orthogonal targeting of EGFRvIII expressing glioblastomas through simultaneous EGFR and PLK1 inhibition. Oncotarget, 2015, 6, 11751-11767.	1.8	9
53	Glioma Stem-like Cells Keep Their H3.3 Variant Levels at Bay. Cancer Cell, 2015, 28, 679-680.	16.8	0
54	Pediatric High-Grade Gliomas and DIPG. Molecular Pathology Library, 2015, , 95-104.	0.1	0

#	Article	IF	CITATIONS
55	A High-Throughput In Vitro Drug Screen in a Genetically Engineered Mouse Model of Diffuse Intrinsic Pontine Glioma Identifies BMS-754807 as a Promising Therapeutic Agent. PLoS ONE, 2015, 10, e0118926.	2.5	57
56	The emerging role of NG2 in pediatric diffuse intrinsic pontine glioma. Oncotarget, 2015, 6, 12141-12155.	1.8	30
57	Pax3 expression enhances PDGF-B-induced brainstem gliomagenesis and characterizes a subset of brainstem glioma. Acta Neuropathologica Communications, 2014, 2, 134.	5.2	27
58	Histopathological spectrum of paediatric diffuse intrinsic pontine glioma: diagnostic and therapeutic implications. Acta Neuropathologica, 2014, 128, 573-581.	7.7	258
59	ET-06 * PRECLINICAL TESTING OF THE HISTONE DEACETYLASE INHIBITOR, PANOBINOSTAT, IN A GENETICALLY ENGINEERED DIFFUSE INTRINSIC PONTINE GLIOMA MOUSE MODEL. Neuro-Oncology, 2014, 16, v80-v80.	1.2	0
60	Children are not just little adults: recent advances in understanding of diffuse intrinsic pontine glioma biology. Pediatric Research, 2014, 75, 205-209.	2.3	70
61	For pediatric glioma, leave no histone unturned. Science, 2014, 346, 1458-1459.	12.6	9
62	Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nature Genetics, 2014, 46, 451-456.	21.4	525
63	Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge. Nature Reviews Cancer, 2014, 14, 92-107.	28.4	469
64	Sox2, a marker for stemâ€like tumor cells in skin squamous cell carcinoma and hedgehog subgroup medulloblastoma. EMBO Journal, 2014, 33, 1984-1986.	7.8	10
65	<scp>A</scp> urora Kinase <scp>B</scp> Is a Potential Therapeutic Target in Pediatric Diffuse Intrinsic Pontine Clioma. Brain Pathology, 2013, 23, 244-253.	4.1	33
66	Inhibition of PRC2 Activity by a Gain-of-Function H3 Mutation Found in Pediatric Glioblastoma. Science, 2013, 340, 857-861.	12.6	1,074
67	PD-0332991, a CDK4/6 Inhibitor, Significantly Prolongs Survival in a Genetically Engineered Mouse Model of Brainstem Glioma. PLoS ONE, 2013, 8, e77639.	2.5	136
68	Disease Control and Ototoxicity Using Intensity-Modulated Radiation Therapy Tumor-Bed Boost for Medulloblastoma. International Journal of Radiation Oncology Biology Physics, 2011, 81, e15-e20.	0.8	42
69	Perifosine and CCI 779 Co-Operate to Induce Cell Death and Decrease Proliferation in PTEN-Intact and PTEN-Deficient PDGF-Driven Murine Glioblastoma. PLoS ONE, 2011, 6, e14545.	2.5	64
70	Reirradiation for recurrent medulloblastoma. Cancer, 2011, 117, 4977-4982.	4.1	65
71	Heterozygosity for Pten Promotes Tumorigenesis in a Mouse Model of Medulloblastoma. PLoS ONE, 2010, 5, e10849.	2.5	40
72	Evidence for and against regional differences in neural stem and progenitor cells of the CNS. Genes and Development, 2010, 24, 2233-2238.	5.9	6

#	Article	IF	CITATIONS
73	Preclinical Evaluation of Radiation and Perifosine in a Genetically and Histologically Accurate Model of Brainstem Glioma. Cancer Research, 2010, 70, 2548-2557.	0.9	149
74	Sonic Hedgehog Pathway Activation Is Induced by Acute Brain Injury and Regulated by Injury-Related Inflammation. Journal of Neuroscience, 2009, 29, 10299-10308.	3.6	192
75	Large Congenital Melanotic Nevi in an Extremity with Neurocutaneous Melanocytosis. Pediatric Dermatology, 2009, 26, 79-82.	0.9	16
76	Modeling Adult Gliomas Using RCAS/t-va Technology. Translational Oncology, 2009, 2, 89-IN6.	3.7	238
77	Gli Activity Correlates with Tumor Grade in Platelet-Derived Growth Factor–Induced Gliomas. Cancer Research, 2008, 68, 2241-2249.	0.9	160
78	Cancer stem cells and survival pathways. Cell Cycle, 2008, 7, 1371-1378.	2.6	108
79	PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes and Development, 2008, 22, 436-448.	5.9	413
80	IGFBP2 Is Overexpressed by Pediatric Malignant Astrocytomas and Induces the Repair Enzyme DNA-PK. Journal of Child Neurology, 2008, 23, 1205-1213.	1.4	20
81	Genetically Engineered Models Have Advantages over Xenografts for Preclinical Studies. Cancer Research, 2006, 66, 3355-3359.	0.9	205
82	Reasons for Pediatrician Nonadherence to Asthma Guidelines. JAMA Pediatrics, 2001, 155, 1057.	3.0	249
83	Genetics of glioma. , 0, , 1-23.		1