
RadosÅ,aw JasiÅ,,ski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9103523/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aging markers for in-service natural ester-based insulating fluids. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18, 714-719.	2.9	73
2	Validation of Selected Non-Destructive Methods for Determining the Compressive Strength of Masonry Units Made of Autoclaved Aerated Concrete. Materials, 2019, 12, 389.	2.9	40
3	Study of Autoclaved Aerated Concrete Masonry Walls with Horizontal Reinforcement under Compression and Shear. Procedia Engineering, 2016, 161, 918-924.	1.2	27
4	Accuracy of Eddy-Current and Radar Methods Used in Reinforcement Detection. Materials, 2019, 12, 1168.	2.9	23
5	Research of Light Concrete Precast Lintels. Procedia Engineering, 2016, 161, 611-617.	1.2	16
6	Research on the Influence of Bed Joint Reinforcement on Strength and Deformability of Masonry Shear Walls. Materials, 2019, 12, 2543.	2.9	15
7	Research and Numerical Investigation of Masonry – AAC Precast Lintels Interaction. Procedia Engineering, 2017, 193, 385-392.	1.2	13
8	Identification of Stress States in Compressed Masonry Walls Using a Non-Destructive Technique (NDT). Materials, 2020, 13, 2852.	2.9	11
9	Mechanical Properties of Masonry Walls Made of Calcium Silicate Materials Made in Poland. Part 1. Masonry Properties and Compressive Strength. Procedia Engineering, 2016, 161, 904-910.	1.2	10
10	Adoption of the Willam-Warnke Failure Criterion for Describing Behavior of Ca-Si Hollow Blocks. Procedia Engineering, 2017, 193, 470-477.	1.2	10
11	Identification of the Parameters of Menétrey -Willam Failure Surface of Calcium Silicate Units. IOP Conference Series: Materials Science and Engineering, 2017, 245, 032045.	0.6	9
12	Effects of Opening Shapes on Behaviour of Shear Walls Made of AAC Masonry Units. IOP Conference Series: Materials Science and Engineering, 2019, 471, 022011.	0.6	9
13	Testing Joints between Walls Made of AAC Masonry Units. Buildings, 2020, 10, 69.	3.1	8
14	Use of the AE Effect to Determine the Stresses State in AAC Masonry Walls under Compression. Materials, 2021, 14, 3459.	2.9	8
15	Parameter estimation of a homogeneous macromodel of masonry wall made of autoclaved aerated concrete based on standard tests. Structures, 2022, 38, 385-401.	3.6	8
16	Mechanical Properties of Masonry Walls Made of Calcium Silicate Materials Made in Poland. Part 2. Shear and Flexural Strength. Procedia Engineering, 2016, 161, 911-917.	1.2	7
17	Numerical Verification of Interaction between Masonry with Precast Reinforced Lintel Made of AAC and Reinforced Concrete Confining Elements. Applied Sciences (Switzerland), 2020, 10, 5446.	2.5	7
18	Effects of Technology of Placing Different Types of Reinforcement in Bed Joints on Compressive and Shear Strength of AAC Masonry Walls. IOP Conference Series: Materials Science and Engineering, 0, 471, 022010.	0.6	6

Radoså,aw Jasiå,,ski

#	Article	IF	CITATIONS
19	Finite Element Study on the Shear Capacity of Traditional Joints between Walls Made of AAC Masonry Units. Materials, 2020, 13, 4035.	2.9	6
20	Comparison Research of Bed Joints Construction and Bed Joints Reinforcement on Shear Parameters of AAC Masonry Walls. Journal of Civil Engineering and Architecture, 2016, 10, .	0.1	6
21	Comparisons of confined and different types of reinforcement on the behavior of masonry shear walls. Ce/Papers, 2018, 2, 353-365.	0.3	5
22	Research of Influence of the Shape of Unreinforced Masonry Shear Walls Made of Calcium Silicate Masonry Units. IOP Conference Series: Materials Science and Engineering, 2019, 471, 022009.	0.6	5
23	Validation of Elastic-Brittle, and Elastic-Plastic FEM Model of the Wall Made of Calcium Silicate and AAC Masonry Units. IOP Conference Series: Materials Science and Engineering, 2019, 603, 032001.	0.6	5
24	The Use of Non-Destructive Testing (NDT) to Detect Bed Joint Reinforcement in AAC Masonry. Applied Sciences (Switzerland), 2020, 10, 4645.	2.5	5
25	PROPOSAL OF PROCEDURE FOR IDENTIFICATION OF MENÉTREY–WILLAM (M-W-3) PLASTICITY SURFACE OF HOMOGENEOUS AND HOLLOW MASONRY UNITS. Engineering Structures and Technologies, 2019, 11, 40-49.	0.1	5
26	Analysis of AAC precast lintels embedded in walls different construction. Ce/Papers, 2018, 2, 367-376.	0.3	4
27	Effects of specimen dimensions and shape on compressive strength of specific autoclaved aerated concrete. Ce/Papers, 2018, 2, 541-556.	0.3	4
28	Tests of Joints in AAC Masonry Walls. Architecture Civil Engineering Environment, 2018, 11, 79-92.	0.6	4
29	The Behaviour of Half-Slabs and Hollow-Core Slab in Four-Edge Supported Conditions. Applied Sciences (Switzerland), 2021, 11, 10354.	2.5	4
30	Size effect of monotonically sheared masonry walls made of AAC masonry units. Ce/Papers, 2018, 2, E12-E25.	0.3	3
31	Joints in masonry walls. Ce/Papers, 2018, 2, 339-346.	0.3	3
32	Shear Capacity of the Zone of Supporting of Precast Lintels Made of AAC. IOP Conference Series: Materials Science and Engineering, 0, 471, 052070.	0.6	3
33	Research of Behaviour of Bed Joints Reinforced Masonry Walls with Openings Made of Autoclaved Aerated Concrete under Horizontal Shearing. IOP Conference Series: Materials Science and Engineering, 2019, 603, 022102.	0.6	3
34	Badanie poÅ,ÄczeÅ,, Å›cian murowych. MateriaÅy Budowlane, 2017, 1, 96-98.	0.1	3
35	Comparison of Influence of Superficial Strengthening with FRCM System and Kind of Mortar Type on Shear Strength of Autoclaved Aerated Concrete Masonry. IOP Conference Series: Materials Science and Engineering, 2021, 1203, 022052.	0.6	3
36	Static Analysis of Prestressed Floor Slabs HC500 with Changes in Tendon Adhesion to Concrete Induced by Penetration of Chloride Ions. IOP Conference Series: Materials Science and Engineering, 0, 471, 052035.	0.6	2

Radoså,aw Jasiå,,ski

#	Article	IF	CITATIONS
37	Application of the DIC Technique to Remote Control of the Hydraulic Load System. Remote Sensing, 2020, 12, 3667.	4.0	2
38	Joints in masonry walls. Acta Scientiarum Polonorum Architectura, 2018, 17, 83-92.	0.3	2
39	Application of the Minor Destructive Test (MDT) method for determination of AAC masonry compressive strength. PrzeglÄd Spawalnictwa, 2019, 91, .	0.5	2
40	Cracking and failure of precast AAC lintels in walls subjected to in-plane vertical loading. Acta Scientiarum Polonorum Architectura, 2018, 17, 93-104.	0.3	2
41	Verifying the Shear Load Capacity of Masonry Walls by the V _{Rd} –N _{Ed} Interaction Diagram. IOP Conference Series: Materials Science and Engineering, 2021, 1203, 022031.	0.6	2
42	Comparison of Masonry Homogenization Methods – Macromodelling and Micromodeling of Walls Behaviour Made of Autoclaved Aerated Concrete Masonry Units. IOP Conference Series: Materials Science and Engineering, 2021, 1203, 022033.	0.6	2
43	Attempt to Describe the Mechanism of Work of Masonry Joints. IOP Conference Series: Materials Science and Engineering, 2019, 471, 052054.	0.6	1
44	Research of Influence of Bed Joints Reinforcement On Strength of Masonry Shear Walls with Openings Made of Calcium Silicate Masonry Units. IOP Conference Series: Materials Science and Engineering, 2020, 960, 022085.	0.6	1
45	Experimental Tests of the Vector II Slab in Field Conditions, Slab and Strip Model. Civil and Environmental Engineering Reports, 2021, 31, 54-69.	0.3	1
46	Proposal of Empirical Homogenization of Masonry Wall Made of AAC Masonry Units. IOP Conference Series: Materials Science and Engineering, 0, 960, 022084.	0.6	1
47	Proposed Method of Distribution of Horizontal Loads on Stiffening Walls. IOP Conference Series: Materials Science and Engineering, 2021, 1203, 022032.	0.6	1
48	Experimental Verification of Same Simple Equilibrium Models of Masonry Shear Walls. IOP Conference Series: Materials Science and Engineering, 2017, 245, 032044.	0.6	0
49	Strength of Unreinforced Joints of Masonry Walls Made of AAC Masonry Units. IOP Conference Series: Materials Science and Engineering, 2019, 603, 032075.	0.6	0
50	Numerical Verification of the Elastic-Plastic Menétrey-William Model (M-W-3) for Masonry Shear Walls Made of Calcium Silicate Masonry Units. IOP Conference Series: Materials Science and Engineering, 2020, 960, 022086.	0.6	0
51	NOŚNOŚĆ STREF PRZYPODPOROWYCH NADPROŻY Z AUTOKLAWIZOWANEGO BETONU KOMÓRKOWEGO Journal of Civil Engineering, Environment and Architecture, 2017, , .	· 0.0	0
52	WspóÅ,praca muru i prefabrykowanego nadproża z ABK. Badania doÅ›wiadczalne. MateriaÅy Budowlane, 2017, 1, 40-43.	0.1	0
53	Badania wpÅ,ywu ksztaÅ,tu Å›cian murowanych z elementów silikatowych poddanych Å›cinaniu. MateriaÅy Budowlane, 2017, 1, 23-28.	0.1	0
54	Badania wpÅ,ywu ksztaÅ,tu murowych Å›cian z autoklawizowanego betonu komórkowego poddanych Å›cinaniu. MateriaÅy Budowlane, 2017, 1, 108-113.	0.1	0

Radoså,aw Jasiå,,ski

#	Article	IF	CITATIONS
55	PoÅ,Äczenia Å›cian murowych, podstawy teoretyczne. MateriaÅy Budowlane, 2017, 1, 192-195.	0.1	0
56	NoÅ›ność prefabrykowanych nadproży z ABK. MateriaÅy Budowlane, 2017, 1, 132-135.	0.1	0
57	WpÅ,yw sposobu murowania na wytrzymaÅ,ość na Å›cinanie Å›cian z elementów murowych z ABK. MateriaÅ y Budowlane, 2018, 1, 79-81.	0.1	0
58	Badania Å›cian usztywniajÄcych z otworami, wykonanych z ABK. MateriaÅy Budowlane, 2018, 1, 40-41.	0.1	0
59	Naprężenia rysujące i niszczące ścian usztywniających z otworami, wykonanych z elementów murow ABK. MateriaÅy Budowlane, 2018, 1, 68-69.	ych z 0.1	0
60	OdksztaÅ,calność postaciowa i sztywność Å›cian usztywniajÄcych z otworami, wykonanych z elementów murowych z ABK. MateriaÅy Budowlane, 2018, 1, 38-39.	0.1	0
61	Research on semi-precast prestressed concrete slab under short-term and long-term load. MATEC Web of Conferences, 2020, 323, 02001.	0.2	0
62	Research Of Influence of Horizontal Reinforcement on Compression and Shear Strength of Autoclaved Aerated Concrete Masonry. IOP Conference Series: Materials Science and Engineering, 2021, 1203, 022053.	0.6	0