Denis C Shields

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9103400/publications.pdf

Version: 2024-02-01

50276 37204 10,329 129 46 96 citations h-index g-index papers 130 130 130 16699 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Molecular evidence for an ancient duplication of the entire yeast genome. Nature, 1997, 387, 708-713.	27.8	1,702
2	Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nature Genetics, 2018, 50, 1412-1425.	21.4	924
3	Codon usage patterns in <i>Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster</i>)and <i>Homo sapiens</i> ; a review of the considerable within-species diversity. Nucleic Acids Research, 1988, 16, 8207-8211.	14.5	569
4	Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nature Genetics, 2017, 49, 403-415.	21.4	492
5	Towards the Improved Discovery and Design of Functional Peptides: Common Features of Diverse Classes Permit Generalized Prediction of Bioactivity. PLoS ONE, 2012, 7, e45012.	2.5	322
6	Identification of heart rate–associated loci and their effects on cardiac conduction and rhythm disorders. Nature Genetics, 2013, 45, 621-631.	21.4	282
7	Synonymous codon usage in <i>Bacillus subtilis</i> reflects both translational selection and mutational biases. Nucleic Acids Research, 1987, 15, 8023-8040.	14.5	277
8	Large-Scale Gene-Centric Meta-Analysis across 39 Studies Identifies Type 2 Diabetes Loci. American Journal of Human Genetics, 2012, 90, 410-425.	6.2	239
9	Large-Scale Gene-Centric Meta-analysis across 32 Studies Identifies Multiple Lipid Loci. American Journal of Human Genetics, 2012, 91, 823-838.	6.2	227
10	The "Thermolabile―Variant of Methylenetetrahydrofolate Reductase and Neural Tube Defects: An Evaluation of Genetic Risk and the Relative Importance of the Genotypes of the Embryo and the Mother. American Journal of Human Genetics, 1999, 64, 1045-1055.	6.2	219
11	Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins. Nature Communications, 2014, 5, 5068.	12.8	216
12	Homocysteine and Risk of Premature Coronary Heart Disease. Circulation, 1996, 94, 2154-2158.	1.6	196
13	Gene-centric Association Signals for Lipids and Apolipoproteins Identified via the HumanCVD BeadChip. American Journal of Human Genetics, 2009, 85, 628-642.	6.2	183
14	A novel approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorder. Human Genetics, 2012, 131, 565-579.	3.8	180
15	Blood Pressure Loci Identified with a Gene-Centric Array. American Journal of Human Genetics, 2011, 89, 688-700.	6.2	159
16	SLiMFinder: A Probabilistic Method for Identifying Over-Represented, Convergently Evolved, Short Linear Motifs in Proteins. PLoS ONE, 2007, 2, e967.	2.5	143
17	CPPpred: prediction of cell penetrating peptides. Bioinformatics, 2013, 29, 3094-3096.	4.1	125
18	Inhibition of dipeptidyl peptidase IV and xanthine oxidase by amino acids and dipeptides. Food Chemistry, 2013, 141, 644-653.	8.2	124

#	Article	IF	Citations
19	Meta-analysis of Dense Genecentric Association Studies Reveals Common and Uncommon Variants Associated with Height. American Journal of Human Genetics, 2011, 88, 6-18.	6.2	122
20	The Evolution of the MAP Kinase Pathways: Coduplication of Interacting Proteins Leads to New Signaling Cascades. Journal of Molecular Evolution, 1999, 49, 567-582.	1.8	117
21	Structures of YAP protein domains reveal promising targets for development of new cancer drugs. Seminars in Cell and Developmental Biology, 2012, 23, 827-833.	5.0	113
22	In silico approaches to predict the potential of milk protein-derived peptides as dipeptidyl peptidase IV (DPP-IV) inhibitors. Peptides, 2014, 57, 43-51.	2.4	113
23	Large-scale genome-wide analysis identifies genetic variants associated with cardiac structure and function. Journal of Clinical Investigation, 2017, 127, 1798-1812.	8.2	106
24	MORGAM (an international pooling of cardiovascular cohorts). International Journal of Epidemiology, 2004, 34, 21-27.	1.9	105
25	SLiMDisc: short, linear motif discovery, correcting for common evolutionary descent. Nucleic Acids Research, 2006, 34, 3546-3554.	14.5	101
26	Preferential Transmission of Paternal Alleles at Risk Genes in Attention-Deficit/Hyperactivity Disorder. American Journal of Human Genetics, 2005, 77, 958-965.	6.2	100
27	Genome-wide association study of genetic determinants of LDL-c response to atorvastatin therapy: importance of Lp(a). Journal of Lipid Research, 2012, 53, 1000-1011.	4.2	97
28	SLiMPrints: conservation-based discovery of functional motif fingerprints in intrinsically disordered protein regions. Nucleic Acids Research, 2012, 40, 10628-10641.	14.5	92
29	Human Tissue Profiling with Multidimensional Protein Identification Technology. Journal of Proteome Research, 2005, 4, 1757-1767.	3.7	81
30	Bioinformatic discovery of novel bioactive peptides., 2007, 3, 108-112.		73
31	Predictive modelling of angiotensin converting enzyme inhibitory dipeptides. Food Chemistry, 2012, 133, 1349-1354.	8.2	73
32	Peptigram: A Web-Based Application for Peptidomics Data Visualization. Journal of Proteome Research, 2017, 16, 712-719.	3.7	73
33	Prediction of Short Linear Protein Binding Regions. Journal of Molecular Biology, 2012, 415, 193-204.	4.2	71
34	Evolutionary instability of CUG-Leu in the genetic code of budding yeasts. Nature Communications, 2018, 9, 1887.	12.8	70
35	Evidence for an allelic association between bipolar disorder and a Na+, K+ adenosine triphosphatase alpha subunit gene (ATP1A3). Biological Psychiatry, 1998, 44, 47-51.	1.3	69
36	SLiMSearch 2.0: biological context for short linear motifs in proteins. Nucleic Acids Research, 2011, 39, W56-W60.	14.5	68

#	Article	IF	CITATIONS
37	ProViz—a web-based visualization tool to investigate the functional and evolutionary features of protein sequences. Nucleic Acids Research, 2016, 44, W11-W15.	14.5	68
38	PeptideLocator: prediction of bioactive peptides in protein sequences. Bioinformatics, 2013, 29, 1120-1126.	4.1	66
39	SLiMFinder: a web server to find novel, significantly over-represented, short protein motifs. Nucleic Acids Research, 2010, 38, W534-W539.	14.5	64
40	Genetic Analysis of the Thermolabile Variant of 5,10-Methylenetetrahydrofolate Reductase as a Risk Factor for Ischemic Stroke. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 208-211.	2.4	63
41	Genetic variation in glycoprotein llb/Illa (GPIIb/Illa) as a determinant of the responses to an oral GPIIb/Illa antagonist in patients with unstable coronary syndromes. Blood, 2001, 98, 3256-3260.	1.4	61
42	Short linear motif candidates in the cell entry system used by SARS-CoV-2 and their potential therapeutic implications. Science Signaling, 2021, 14, .	3.6	61
43	Switches in species-specific codon preferences: The influence of mutation biases. Journal of Molecular Evolution, 1990, 31, 71-80.	1.8	60
44	Masking residues using context-specific evolutionary conservation significantly improves short linear motif discovery. Bioinformatics, 2009, 25, 443-450.	4.1	60
45	Predicting the Important Enzymes in Human Breast Milk Digestion. Journal of Agricultural and Food Chemistry, 2014, 62, 7225-7232.	5. 2	55
46	The SLiMDisc server: short, linear motif discovery in proteins. Nucleic Acids Research, 2007, 35, W455-W459.	14.5	51
47	Marked Variability in the Extent of Protein Disorder within and between Viral Families. PLoS ONE, 2013, 8, e60724.	2.5	50
48	EnzymePredictor: A Tool for Predicting and Visualizing Enzymatic Cleavages of Digested Proteins. Journal of Proteome Research, 2012, 11, 6056-6065.	3.7	48
49	CompariMotif: quick and easy comparisons of sequence motifs. Bioinformatics, 2008, 24, 1307-1309.	4.1	47
50	Renin Gene Polymorphisms and Haplotypes, Blood Pressure, and Responses to Renin-Angiotensin System Inhibition. Hypertension, 2007, 50, 340-347.	2.7	41
51	Following the Digestion of Milk Proteins from Mother to Baby. Journal of Proteome Research, 2014, 13, 5777-5783.	3.7	41
52	Integrating biomarkers across omic platforms: an approach to improve stratification of patients with indolent and aggressive prostate cancer. Molecular Oncology, 2018, 12, 1513-1525.	4.6	41
53	Gene conversion among chemokine receptors. Gene, 2000, 246, 239-245.	2.2	39
54	A genomeâ€wide association study of recipient genotype and mediumâ€ŧerm kidney allograft function. Clinical Transplantation, 2013, 27, 379-387.	1.6	39

#	Article	IF	Citations
55	Significantly Different Patterns of Amino Acid Replacement After Gene Duplication as Compared to After Speciation. Molecular Biology and Evolution, 2003, 20, 484-490.	8.9	38
56	Association of Methylenetetrahydrofolate Reductase Polymorphism and the Risk of Squamous Cell Carcinoma in Renal Transplant Patients. Transplantation, 2007, 84, 113-116.	1.0	37
57	Approved Drug Mimics of Short Peptide Ligands from Protein Interaction Motifs. Journal of Chemical Information and Modeling, 2008, 48, 1943-1948.	5 . 4	35
58	Shift in the isoelectric-point of milk proteins as a consequence of adaptive divergence between the milks of mammalian species. Biology Direct, 2011, 6, 40.	4.6	35
59	CycloPs: Generating Virtual Libraries of Cyclized and Constrained Peptides Including Nonnatural Amino Acids. Journal of Chemical Information and Modeling, 2011, 51, 829-836.	5. 4	34
60	Platelet glycoprotein Ib alpha receptor polymorphisms and recurrent ischaemic events in acute coronary syndrome patients. Journal of Thrombosis and Thrombolysis, 2002, 13, 13-19.	2.1	33
61	Predicting Binding within Disordered Protein Regions to Structurally Characterised Peptide-Binding Domains. PLoS ONE, 2013, 8, e72838.	2.5	33
62	Uroplakin III is not a major candidate gene for primary vesicoureteral reflux. European Journal of Human Genetics, 2005, 13, 500-502.	2.8	32
63	Genetic polymorphisms in platelet-related proteins and coronary artery disease: investigation of candidate genes, including N-acetylgalactosaminyltransferase 4 (GALNT4) and sulphotransferase 1A1/2 (SULT1A1/2). Journal of Thrombosis and Thrombolysis, 2009, 27, 175-184.	2.1	32
64	Interactome-wide prediction of short, disordered protein interaction motifs in humans. Molecular BioSystems, 2012, 8, 282-295.	2.9	30
65	Meta-analysis of genome-wide association studies of HDL cholesterol response to statins. Journal of Medical Genetics, 2016, 53, 835-845.	3.2	28
66	Casein Hydrolysate with Glycemic Control Properties: Evidence from Cells, Animal Models, and Humans. Journal of Agricultural and Food Chemistry, 2018, 66, 4352-4363.	5.2	28
67	Estimation and efficient computation of the true probability of recurrence of short linear protein sequence motifs in unrelated proteins. BMC Bioinformatics, 2010, 11, 14.	2.6	27
68	A polymorphism in <i>ACE2</i> is associated with a lower risk for fatal cardiovascular events in females: the MORGAM project. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2011, 12, 504-509.	1.7	27
69	Computational Approaches to Developing Short Cyclic Peptide Modulators of Protein–Protein Interactions. Methods in Molecular Biology, 2015, 1268, 241-271.	0.9	27
70	Acquisition of multiple virulence/avirulence determinants by potato virus X (PVX) has occurred through convergent evolution rather than through recombination. Virus Genes, 2000, 20, 165-172.	1.6	26
71	Discovery of Small Molecule Inhibitors of Proteinâ^Protein Interactions Using Combined Ligand and Target Score Normalization. Journal of Chemical Information and Modeling, 2009, 49, 2708-2717.	5.4	26
72	Evidence that mutation patterns vary among Drosophila transposable elements. Journal of Molecular Biology, 1989, 207, 843-846.	4.2	24

#	Article	IF	CITATIONS
73	Genetic variability in the extracellular matrix as a determinant of cardiovascular risk: association of type III collagen COL3A1 polymorphisms with coronary artery disease. Blood, 2002, 100, 1220-1223.	1.4	24
74	Protein Disorder and Short Conserved Motifs in Disordered Regions Are Enriched near the Cytoplasmic Side of Single-Pass Transmembrane Proteins. PLoS ONE, 2012, 7, e44389.	2.5	21
75	The evolution of haematopoietic cytokine /receptor complexes. Cytokine, 1995, 7, 679-688.	3.2	20
76	The Impact on Coronary Artery Disease of Common Polymorphisms Known to Modulate Responses to Pathogens. Annals of Human Genetics, 2006, 70, 934-945.	0.8	19
77	Meta-Analysis To Test the Association of HIV-1 <i>nef</i> Amino Acid Differences and Deletions with Disease Progression. Journal of Virology, 2010, 84, 3644-3653.	3.4	19
78	SLiMScape: a protein short linear motif analysis plugin for Cytoscape. BMC Bioinformatics, 2013, 14, 224.	2.6	19
79	Analysis with the exome array identifies multiple new independent variants in lipid loci. Human Molecular Genetics, 2016, 25, 4094-4106.	2.9	19
80	A method to predict residues conferring functional differences between related proteins: Application to MAP kinase pathways. Protein Science, 2000, 9, 655-670.	7.6	18
81	Potential of known and short prokaryotic protein motifs as a basis for novel peptide-based antibacterial therapeutics: a computational survey. Frontiers in Microbiology, 2014, 5, 4.	3. 5	18
82	Functional characterisation of the YIPF protein family in mammalian cells. Histochemistry and Cell Biology, 2017, 147, 439-451.	1.7	18
83	Enriching antimicrobial peptides from milk hydrolysates using pectin/alginate food-gels. Food Chemistry, 2021, 352, 129220.	8.2	18
84	Identification of Potential Small Molecule Peptidomimetics Similar to Motifs in Proteins. Journal of Chemical Information and Modeling, 2007, 47, 464-474.	5.4	17
85	Platelet signalling networks: Pathway perturbation demonstrates differential sensitivity of ADP secretion and fibrinogen binding. Platelets, 2012, 23, 17-25.	2.3	17
86	Genome-Wide Analysis of Blood Pressure Variability and Ischemic Stroke. Stroke, 2013, 44, 2703-2709.	2.0	17
87	Lack of evidence for a major locus for bipolar disorder in the pericentromeric region of chromosome 18 in irish pedigrees. Biological Psychiatry, 1997, 42, 486-494.	1.3	14
88	Evaluation of Whether Accelerated Protein Evolution in Chordates Has Occurred before, after, or Simultaneously with Gene Duplication. Molecular Biology and Evolution, 2006, 24, 315-323.	8.9	14
89	Profile-based short linear protein motif discovery. BMC Bioinformatics, 2012, 13, 104.	2.6	14
90	Virtual Screening Using Combinatorial Cyclic Peptide Libraries Reveals Protein Interfaces Readily Targetable by Cyclic Peptides. Journal of Chemical Information and Modeling, 2015, 55, 600-613.	5.4	14

#	Article	IF	Citations
91	Genetic stratification of pathogen-response-related and other variants within a homogeneous Caucasian Irish population. European Journal of Human Genetics, 2005, 13, 798-806.	2.8	13
92	Evolution of the isoelectric point of mammalian proteins as a consequence of indels and adaptive evolution. Proteins: Structure, Function and Bioinformatics, 2011, 79, 1635-1648.	2.6	13
93	Haplotypic analysis of tag SNPs of the interleukin-18 gene in relation to cardiovascular disease events: the MORGAM Project. European Journal of Human Genetics, 2008, 16, 1512-1520.	2.8	12
94	Peptide-Binding Domains: Are Limp Handshakes Safest?. Science Signaling, 2012, 5, pe40.	3.6	12
95	Implications of kappa-casein evolutionary diversity for the self-assembly and aggregation of casein micelles. Royal Society Open Science, 2019, 6, 190939.	2.4	12
96	Prediction of polyproline II secondary structure propensity in proteins. Royal Society Open Science, 2020, 7, 191239.	2.4	12
97	Differences in the Number of Intrinsically Disordered Regions between Yeast Duplicated Proteins, and Their Relationship with Functional Divergence. PLoS ONE, 2011, 6, e24989.	2.5	12
98	The CEPH consortium linkage map of human chromosome 2. Genomics, 1992, 14, 1055-1063.	2.9	10
99	The impact of genetic variation in the region of the GPIIIa gene, on PIA2 expression bias and GPIIb/IIIa receptor density in platelets. British Journal of Haematology, 2005, 132, 051220022257002.	2.5	10
100	Ligand Switching in Cell-Permeable Peptides: Manipulation of the $\hat{l}\pm$ -Integrin Signature Motif. ACS Chemical Biology, 2009, 4, 457-471.	3.4	9
101	SCL-Epred: a generalised de novo eukaryotic protein subcellular localisation predictor. Amino Acids, 2013, 45, 291-299.	2.7	9
102	SLiMSearch: A Webserver for Finding Novel Occurrences of Short Linear Motifs in Proteins, Incorporating Sequence Context. Lecture Notes in Computer Science, 2010, , 50-61.	1.3	9
103	Amino acid enrichment and compositional changes among mammalian milk proteins and the resulting nutritional consequences. Journal of Dairy Science, 2014, 97, 1248-1258.	3.4	8
104	Peptides derived from cadherin juxtamembrane region inhibit platelet function. Royal Society Open Science, 2018, 5, 172347.	2.4	8
105	Web Server To Identify Similarity of Amino Acid Motifs to Compounds (SAAMCO). Journal of Chemical Information and Modeling, 2008, 48, 1524-1529.	5.4	7
106	Angiotensin converting enzyme and nitric oxide inhibitory activities ofÂnovel milk derived peptides. International Dairy Journal, 2014, 35, 38-42.	3.0	7
107	Design and Evaluation of Antimalarial Peptides Derived from Prediction of Short Linear Motifs in Proteins Related to Erythrocyte Invasion. PLoS ONE, 2015, 10, e0127383.	2.5	7
108	Impact of genetic variation in the 5-HT transporter and receptor on platelet function in patients with stable CAD taking aspirin. Thrombosis Research, 2016, 146, 51-55.	1.7	7

#	Article	IF	Citations
109	Genetic variants in PPARGC1B and CNTN4 are associated with thromboxane A2 formation and with cardiovascular event free survival in the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT). Atherosclerosis, 2018, 269, 42-49.	0.8	7
110	Computational Opportunities and Challenges in Finding Cyclic Peptide Modulators of Protein–Protein Interactions. Methods in Molecular Biology, 2019, 2001, 73-95.	0.9	7
111	Integrating Genotypic Data with Transcriptomic and Proteomic Data. Comparative and Functional Genomics, 2002, 3, 22-27.	2.0	6
112	Absolute Net Charge and the Biological Activity of Oligopeptides. Journal of Chemical Information and Modeling, 2006, 46, 2183-2190.	5.4	5
113	Lack of association between NFKBIL1/LTA polymorphisms and hypertension, myocardial infarct, unstable angina and stable angina in a large Irish population sample. Atherosclerosis, 2008, 197, 465-466.	0.8	5
114	Genome-wide epistatic expression quantitative trait loci discovery in four human tissues reveals the importance of local chromosomal interactions governing gene expression. BMC Genomics, 2015, 16, 109.	2.8	5
115	Optimal computational comparison of mass spectrometric peptide profiles of alternative hydrolysates from the same starting material. LWT - Food Science and Technology, 2016, 73, 296-302.	5.2	5
116	Computational and experimental analysis of bioactive peptide linear motifs in the integrin adhesome. PLoS ONE, 2019, 14, e0210337.	2.5	5
117	Prediction of Genetic Risks from Segregation Analyses of Morbid Risks. Human Heredity, 1994, 44, 52-55.	0.8	4
118	Cadherin juxtamembrane region derived peptides inhibit $TGF\hat{l}^21$ induced gene expression. Bioarchitecture, 2014, 4, 103-110.	1.5	4
119	Discovering Anti-platelet Drug Combinations with an Integrated Model of Activator-Inhibitor Relationships, Activator-Activator Synergies and Inhibitor-Inhibitor Synergies. PLoS Computational Biology, 2015, 11, e1004119.	3.2	4
120	Resolving the Interactome of the Human Macrophage Immunometabolism Regulator (MACIR) with Enhanced Membrane Protein Preparation and Affinity Proteomics. Proteomics, 2020, 20, e2000062.	2.2	4
121	Coding of pointers in the segregation analysis program POINTER. Genetic Epidemiology, 1994, 11, 385-387.	1.3	3
122	Computational survey of peptides derived from disulphide-bonded protein loops that may serve as mediators of protein-protein interactions. BMC Bioinformatics, 2014, 15, 305.	2.6	3
123	Overdispersion of allele frequency differences between populations: implications for meta-analyses of genotypic disease associations. European Journal of Human Genetics, 2005, 13, 79-85.	2.8	2
124	Mapping Genes Within a YAC by Computer-Assisted Interpretation of Partial Restriction Digestions. Nucleic Acids Research, 1996, 24, 4495-4500.	14.5	1
125	A sequence sub-sampling algorithm increases the power to detect distant homologues. Nucleic Acids Research, 2005, 33, 3772-3778.	14.5	1
126	Correlation of disorder between S. cerevisiae interacting proteins. Molecular BioSystems, 2012, 8, 417-425.	2.9	1

#	Article	IF	CITATIONS
127	Coarse Master Equation-Based Analysis of N-Methylation and Temperature Effects on the Dynamics of Cyclic Peptides. Biophysical Journal, 2016, 110, 379a.	0.5	1
128	SLiMScape 3.x: a Cytoscape 3 app for discovery of Short Linear Motifs in protein interaction networks. F1000Research, 2015, 4, 477.	1.6	1
129	Computational modelling of chromosomally clustering protein domains in bacteria. BMC Bioinformatics, 2021, 22, 593.	2.6	1