Boris B Dzantiev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9100204/publications.pdf

Version: 2024-02-01

203 papers 4,882 citations

36 h-index 57 g-index

206 all docs

206 docs citations

206 times ranked 4467 citing authors

#	Article	IF	Citations
1	Immunochromatographic methods in food analysis. TrAC - Trends in Analytical Chemistry, 2014, 55, 81-93.	11.4	287
2	â€Traffic light' immunochromatographic test based on multicolor quantum dots for the simultaneous detection of several antibiotics in milk. Biosensors and Bioelectronics, 2015, 63, 255-261.	10.1	255
3	Quantum dot-based lateral flow immunoassay for detection of chloramphenicol in milk. Analytical and Bioanalytical Chemistry, 2013, 405, 4997-5000.	3.7	167
4	Towards Lateral Flow Quantitative Assays: Detection Approaches. Biosensors, 2019, 9, 89.	4.7	133
5	SERS-based lateral flow immunoassay of troponin I by using gap-enhanced Raman tags. Nano Research, 2019, 12, 413-420.	10.4	105
6	Less is More: A Comparison of Antibody–Gold Nanoparticle Conjugates of Different Ratios. Bioconjugate Chemistry, 2017, 28, 2737-2746.	3.6	96
7	Factors influencing the detection limit of the lateral-flow sandwich immunoassay: a case study with potato virus X. Analytical and Bioanalytical Chemistry, 2012, 403, 1595-1605.	3.7	88
8	Nonlinear responses to waterborne cadmium exposure in zebrafish. An in vivo study. Environmental Research, 2017, 157, 173-181.	7.5	84
9	Double-enhanced lateral flow immunoassay for potato virus X based on a combination of magnetic and gold nanoparticles. Analytica Chimica Acta, 2018, 1007, 50-60.	5.4	77
10	Methods and Applications of In Silico Aptamer Design and Modeling. International Journal of Molecular Sciences, 2020, 21, 8420.	4.1	72
11	Cadmium, lead and mercury in muscle tissue of gilthead seabream and seabass: Risk evaluation for consumers. Food and Chemical Toxicology, 2019, 124, 439-449.	3.6	70
12	A chitosan gold nanoparticles molecularly imprinted polymer based ciprofloxacin sensor. RSC Advances, 2020, 10, 12823-12832.	3.6	70
13	Integration of lateral flow and microarray technologies for multiplex immunoassay: application to the determination of drugs of abuse. Mikrochimica Acta, 2013, 180, 1165-1172.	5.0	68
14	Rapid immunochromatographic assay for ofloxacin in animal original foodstuffs using native antisera labeled by colloidal gold. Talanta, 2014, 119, 125-132.	5.5	67
15	Adsorption of proteins on gold nanoparticles: One or more layers?. Colloids and Surfaces B: Biointerfaces, 2019, 173, 557-563.	5.0	67
16	Correlation between the composition of multivalent antibody conjugates with colloidal gold nanoparticles and their affinity. Journal of Immunological Methods, 2010, 357, 17-25.	1.4	62
17	Use of gold nanoparticle-labeled secondary antibodies to improve the sensitivity of an immunochromatographic assay for aflatoxin B1. Mikrochimica Acta, 2014, 181, 1939-1946.	5.0	62
18	Perspective and application of molecular imprinting approach for antibiotic detection in food and environmental samples: A critical review. Food Control, 2020, 118, 107381.	5.5	62

#	Article	IF	CITATIONS
19	Rapid Immunoenzyme Assay of Aflatoxin B1 Using Magnetic Nanoparticles. Sensors, 2014, 14, 21843-21857.	3.8	57
20	Development of the sensitive lateral flow immunoassay with silver enhancement for the detection of Ralstonia solanacearum in potato tubers. Talanta, 2016, 152, 521-530.	5. 5	56
21	Rapid Multiple Immunoenzyme Assay of Mycotoxins. Toxins, 2015, 7, 238-254.	3.4	55
22	Progress in rapid optical assays for heavy metal ions based on the use of nanoparticles and receptor molecules. Mikrochimica Acta, 2019, 186, 172.	5.0	55
23	Enzyme immunoassay and proteomic characterization of troponin I as a marker of mammalian muscle compounds in raw meat and some meat products. Meat Science, 2015, 105, 46-52.	5.5	52
24	Ultrasensitive magnetic ELISA of zearalenone with pre-concentration and chemiluminescent detection. Food Control, 2018, 84, 330-338.	5 . 5	50
25	"Multistage in one touch" design with a universal labelling conjugate for high-sensitive lateral flow immunoassays. Biosensors and Bioelectronics, 2016, 86, 575-579.	10.1	49
26	Bifunctional gold nanoparticles as an agglomeration-enhancing tool for highly sensitive lateral flow tests: a case study with procalcitonin. Mikrochimica Acta, 2017, 184, 4189-4195.	5.0	47
27	Silver-enhanced lateral flow immunoassay for highly-sensitive detection of potato leafroll virus. Food and Agricultural Immunology, 2018, 29, 445-457.	1.4	47
28	Nucleic acid lateral flow assay with recombinase polymerase amplification: Solutions for highly sensitive detection of RNA virus. Talanta, 2020, 210, 120616.	5 . 5	46
29	Fluorescence Polarization-Based Bioassays: New Horizons. Sensors, 2020, 20, 7132.	3.8	43
30	Setting up the cut-off level of a sensitive barcode lateral flow assay with magnetic nanoparticles. Talanta, 2017, 164, 69-76.	5.5	42
31	One-step simultaneous immunochromatographic strip test for multianalysis of ochratoxin a and zearalenone. Journal of Microbiology and Biotechnology, 2009, 19, 83-92.	2.1	41
32	Use of anchor protein modules in fluorescence polarisation aptamer assay for ochratoxin A determination. Analytica Chimica Acta, 2017, 962, 80-87.	5.4	39
33	Nano-(Q)SAR for Cytotoxicity Prediction of Engineered Nanomaterials. Molecules, 2019, 24, 4537.	3.8	39
34	Molecularly imprinted polymers as receptors for assays of antibiotics. Critical Reviews in Analytical Chemistry, 2020, 50, 291-310.	3.5	39
35	Toxicity of nanosilver in intragastric studies: Biodistribution and metabolic effects. Toxicology Letters, 2016, 241, 184-192.	0.8	38
36	Immunoassay Techniques for Detection of the Herbicide Simazine Based on Use of Oppositely Charged Water-Soluble Polyelectrolytes. Analytical Chemistry, 1999, 71, 3538-3543.	6.5	37

#	Article	IF	Citations
37	Production of antibodies and development of enzyme-linked immunosorbent assays for the herbicide butachlor. Analytica Chimica Acta, 2003, 491, 1-13.	5.4	35
38	Enlargement of Gold Nanoparticles for Sensitive Immunochromatographic Diagnostics of Potato Brown Rot. Sensors, 2019, 19, 153.	3.8	35
39	Cut-off on demand: adjustment of the threshold level of an immunochromatographic assay for chloramphenicol. Analytical Methods, 2015, 7, 6378-6384.	2.7	33
40	Multiarray on a test strip (MATS): rapid multiplex immunodetection of priority potato pathogens. Analytical and Bioanalytical Chemistry, 2016, 408, 6009-6017.	3.7	33
41	A triple immunochromatographic test for simultaneous determination of cardiac troponin I, fatty acid binding protein, and C-reactive protein biomarkers. Mikrochimica Acta, 2017, 184, 463-471.	5.0	33
42	Gold nanoparticles of different shape for bicolor lateral flow test. Analytical Biochemistry, 2019, 568, 7-13.	2.4	33
43	Direct immunosensing by spectral correlation interferometry: assay characteristics versus antibody immobilization chemistry. Analytical and Bioanalytical Chemistry, 2015, 407, 3955-3964.	3.7	31
44	Enhancement of lateral flow immunoassay by alkaline phosphatase: a simple and highly sensitive test for potato virus X. Mikrochimica Acta, 2018, 185, 25.	5.0	30
45	Mathematical Model of Serodiagnostic Immunochromatographic Assay. Analytical Chemistry, 2017, 89, 4419-4427.	6.5	29
46	Fluorescence polarisation immunoassays for strobilurin fungicides kresoxim-methyl, trifloxystrobin and picoxystrobin. Talanta, 2017, 162, 495-504.	5.5	29
47	Advantages of Soybean Peroxidase over Horseradish Peroxidase as the Enzyme Label in Chemiluminescent Enzyme-Linked Immunosorbent Assay of Sulfamethoxypyridazine. Journal of Agricultural and Food Chemistry, 2010, 58, 3284-3289.	5.2	28
48	Quantum-Dot-Based Immunochromatographic Assay for Total IgE in Human Serum. PLoS ONE, 2013, 8, e77485.	2.5	28
49	Key significance of DNA-target size in lateral flow assay coupled with recombinase polymerase amplification. Analytica Chimica Acta, 2020, 1102, 109-118.	5.4	28
50	Application of gold nanoparticles produced by laser ablation for immunochromatographic assay labeling. Analytical Biochemistry, 2015, 491, 65-71.	2.4	27
51	The steadfast Au@Pt soldier: Peroxide-tolerant nanozyme for signal enhancement in lateral flow immunoassay of peroxidase-containing samples. Talanta, 2021, 225, 121961.	5.5	27
52	A new kind of highly sensitive competitive lateral flow immunoassay displaying direct analyte-signal dependence. Application to the determination of the mycotoxin deoxynivalenol. Mikrochimica Acta, 2018, 185, 29.	5.0	26
53	Lateral Flow Immunoassay for Rapid Detection of Grapevine Leafroll-Associated Virus. Biosensors, 2018, 8, 111.	4.7	26
54	Highly Sensitive Immunochromatographic Detection of Antibiotic Ciprofloxacin in Milk. Applied Biochemistry and Microbiology, 2018, 54, 670-676.	0.9	26

#	Article	IF	Citations
55	Raman Scattering-Based Biosensing: New Prospects and Opportunities. Biosensors, 2021, 11, 512.	4.7	26
56	Homogeneous enzyme immunoassay for pyrethroid pesticides and their derivatives using bacillary alpha-amylase as label. Analytica Chimica Acta, 1997, 347, 131-138.	5.4	25
57	Post-assay growth of gold nanoparticles as a tool for highly sensitive lateral flow immunoassay. Application to the detection of potato virus X. Mikrochimica Acta, 2018, 185, 506.	5.0	25
58	ELISA and Lateral Flow Immunoassay for the Detection of Food Colorants: State of the Art. Critical Reviews in Analytical Chemistry, 2019, 49, 209-223.	3.5	25
59	Development of a multicomponent immunochromatographic test system for the detection of fluoroquinolone and amphenicol antibiotics in dairy products. Journal of the Science of Food and Agriculture, 2019, 99, 3834-3842.	3.5	25
60	Immunochromatographic Assay with Photometric Detection for Rapid Determination of the Herbicide Atrazine and Other Triazines in Foodstuffs. Journal of AOAC INTERNATIONAL, 2010, 93, 36-43.	1.5	24
61	Urchin peroxidase-mimicking Au@Pt nanoparticles as a label in lateral flow immunoassay: impact of nanoparticle composition on detection limit of Clavibacter michiganensis. Mikrochimica Acta, 2020, 187, 268.	5.0	24
62	Lateral flow immunoassay for sensitive detection of undeclared chicken meat in meat products. Food Chemistry, 2021, 344, 128598.	8.2	24
63	Polyvalent interaction of antibodies with bacterial cells. Molecular Immunology, 1990, 27, 965-971.	2.2	23
64	Production of monoclonal antibodies against fullerene C ₆₀ and development of a fullerene enzyme immunoassay. Analyst, The, 2012, 137, 98-105.	3.5	23
65	Development and Application of a Label-Free Fluorescence Method for Determining the Composition of Gold Nanoparticle–Protein Conjugates. International Journal of Molecular Sciences, 2015, 16, 907-923.	4.1	23
66	Application of Magnetic Nanoparticles in Immunoassay. Nanotechnologies in Russia, 2017, 12, 471-479.	0.7	23
67	Highly sensitive immunochromatographic assay for qualitative and quantitative control of beta-agonist salbutamol and its structural analogs in foods. Food Control, 2018, 86, 50-58.	5.5	23
68	Development of a double immunochromatographic test system for simultaneous determination of lincomycin and tylosin antibiotics in foodstuffs. Food Chemistry, 2020, 318, 126510.	8.2	23
69	Sensitive lateral flow immunoassay of an antibiotic neomycin in foodstuffs. Journal of Food Science and Technology, 2021, 58, 292-301.	2.8	23
70	A family of DNA aptamers with varied duplex region length that forms complexes with thrombin and prothrombin. FEBS Letters, 2015, 589, 2043-2049.	2.8	22
71	Development of lateral flow immunoassay for rapid control and quantification of the presence of the colorant Sudan I in spices and seafood. Food Control, 2017, 73, 247-253.	5.5	22
72	How to Improve Sensitivity of Sandwich Lateral Flow Immunoassay for Corpuscular Antigens on the Example of Potato Virus Y?. Sensors, 2018, 18, 3975.	3.8	22

#	Article	IF	CITATIONS
73	Lateral Flow Immunoassay of SARS-CoV-2 Antigen with SERS-Based Registration: Development and Comparison with Traditional Immunoassays. Biosensors, 2021, 11, 510.	4.7	22
74	Express detection of nonylphenol in water samples by fluorescence polarization immunoassay. Analytical and Bioanalytical Chemistry, 2004, 378, 634-641.	3.7	21
75	Immunoenzyme assay of nonylphenol: study of selectivity and detection of alkylphenolic non-ionic surfactants in water samples. Talanta, 2005, 65, 367-374.	5.5	21
76	High-sensitivity immunochromatographic assay for fumonisin B1 based on indirect antibody labeling. Biotechnology Letters, 2017, 39, 751-758.	2.2	21
77	"External―antibodies as the simplest tool for sensitive immunochromatographic tests. Talanta, 2017, 175, 77-81.	5.5	21
78	Alarm lateral flow immunoassay for detection of the total infection caused by the five viruses. Talanta, 2019, 195, 739-744.	5.5	21
79	The Potential Use of Isothermal Amplification Assays for In-Field Diagnostics of Plant Pathogens. Plants, 2021, 10, 2424.	3.5	20
80	Rapid polyelectrolyte-based immunofiltration technique for testosterone detection in serum samples. Analyst, The, 2003, 128, 1275.	3.5	19
81	Antibodies as specific chaperones. Biochemistry (Moscow), 2004, 69, 1233-1238.	1.5	19
82	Study of Distribution and Biological Effects of Fullerene C ₆₀ after Single and Multiple Intragastrical Administrations to Rats. Fullerenes Nanotubes and Carbon Nanostructures, 2015, 23, 658-668.	2.1	19
83	Complex analysis of concentrated antibody-gold nanoparticle conjugates' mixtures using asymmetric flow field-flow fractionation. Journal of Chromatography A, 2016, 1477, 56-63.	3.7	19
84	Measurement of (Aptamer–Small Target) <i>K</i> _D Using the Competition between Fluorescently Labeled and Unlabeled Targets and the Detection of Fluorescence Anisotropy. Analytical Chemistry, 2018, 90, 9189-9198.	6.5	19
85	Lectin-based detection of Escherichia coli and Staphylococcus aureus by flow cytometry. Archives of Microbiology, 2019, 201, 313-324.	2.2	19
86	Advantages of Highly Spherical Gold Nanoparticles as Labels for Lateral Flow Immunoassay. Sensors, 2020, 20, 3608.	3.8	19
87	Multiplex Assay of Viruses Integrating Recombinase Polymerase Amplification, Barcode—Anti-Barcode Pairs, Blocking Anti-Primers, and Lateral Flow Assay. Analytical Chemistry, 2021, 93, 13641-13650.	6.5	19
88	Sensitive lateral flow immunoassay for the detection of pork additives in raw and cooked meat products. Food Chemistry, 2021, 359, 129927.	8.2	19
89	Wheat germ agglutinin and Lens culinaris agglutinin sensitized anisotropic silver nanoparticles in detection of bacteria: A simple photometric assay. Analytica Chimica Acta, 2017, 981, 80-85.	5.4	19
90	Colorimetric Determination of Lead Using Gold Nanoparticles. Analytical Letters, 2015, 48, 766-782.	1.8	18

#	Article	IF	CITATIONS
91	Methods for the Diagnosis of Grapevine Viral Infections: A Review. Agriculture (Switzerland), 2018, 8, 195.	3.1	18
92	Fluorescence Polarization Immunoassay for Determination of Enrofloxacin in Pork Liver and Chicken. Molecules, 2019, 24, 4462.	3.8	18
93	Design of Multiplex Lateral Flow Tests: A Case Study for Simultaneous Detection of Three Antibiotics. Biosensors, 2020, 10, 17.	4.7	18
94	Immunochromatographic Detection of Myoglobin as a Specific Biomarker of Porcine Muscle Tissues in Meat Products. Applied Sciences (Switzerland), 2020, 10, 7437.	2.5	17
95	Peroxidase-mimicking nanozyme with surface-dispersed Pt atoms for the colorimetric lateral flow immunoassay of C-reactive protein. Mikrochimica Acta, 2021, 188, 309.	5.0	17
96	Ways to Reach Lower Detection Limits of Lateral Flow Immunoassays., 0,,.		16
97	An immunochromatographic test system for the determination of lincomycin in foodstuffs of animal origin. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1141, 122014.	2.3	16
98	Microplate immunoassay technique using polyelectrolyte carriers: kinetic studies and application to detection of the herbicide atrazine. Analytica Chimica Acta, 1999, 399, 151-160.	5.4	15
99	Preparation of antibodies and development of enzyme-linked immunosorbent assay for nonylphenol. International Journal of Environmental Analytical Chemistry, 2004, 84, 965-978.	3.3	15
100	Development of a lateral flow immunoassay for rapid diagnosis of potato blackleg caused by Dickeya species. Analytical and Bioanalytical Chemistry, 2017, 409, 1915-1927.	3.7	15
101	A new visual enzyme immunoassay of methamphetamine using linear water-soluble polyelectrolytes. Immunology Letters, 1994, 41, 205-211.	2.5	14
102	Stereospecific recognition and quantitative structure–activity relationship between antibodies and enantiomers: ofloxacin as a model hapten. Analyst, The, 2015, 140, 1037-1045.	3.5	14
103	Mathematical modeling of bioassays. Biochemistry (Moscow), 2017, 82, 1744-1766.	1.5	14
104	Fluorescence polarization immunoassay of colchicine. Journal of Pharmaceutical and Biomedical Analysis, 2018, 159, 326-330.	2.8	14
105	Development of lateral flow assay combined with recombinase polymerase amplification for highly sensitive detection of Dickeya solani. Molecular and Cellular Probes, 2020, 53, 101622.	2.1	14
106	Methods for Increasing Sensitivity of Immunochromatographic Test Systems with Colorimetric Detection (Review). Applied Biochemistry and Microbiology, 2021, 57, 143-151.	0.9	14
107	Comparative Study of In Situ Techniques to Enlarge Gold Nanoparticles for Highly Sensitive Lateral Flow Immunoassay of SARS-CoV-2. Biosensors, 2021, 11, 229.	4.7	14
108	Cascade-Enhanced Lateral Flow Immunoassay for Sensitive Detection of Okadaic Acid in Seawater, Fish, and Seafood. Foods, 2022, 11, 1691.	4.3	14

#	Article	IF	Citations
109	Detection of Intermolecular Interactions Based on Surface Plasmon Resonance Registration. Biochemistry (Moscow), 2015, 80, 1820-1832.	1.5	13
110	Application of magnetite nanoparticles for the development of highly sensitive immunochromatographic test systems for mycotoxin detection. Applied Biochemistry and Microbiology, 2017, 53, 470-475.	0.9	13
111	Recombinase polymerase amplification combined with a magnetic nanoparticle-based immunoassay for fluorometric determination of troponin T. Mikrochimica Acta, 2019, 186, 549.	5.0	13
112	Combination of phenylboronic acid and oligocytosine for selective and specific detection of lead(ii) by lateral flow test strip. Analytica Chimica Acta, 2021, 1155, 338318.	5.4	13
113	Comparison of two express immunotechniques with polyelectrolyte carriers, ELISA and FIIAA, for the analysis of atrazine. Talanta, 2005, 65, 324-330.	5.5	12
114	Fluorescence polarization immunoassay of ractopamine. Applied Biochemistry and Microbiology, 2016, 52, 673-678.	0.9	12
115	Theoretical and Experimental Comparison of Different Formats of Immunochromatographic Serodiagnostics. Sensors, 2018, 18, 36.	3.8	12
116	Lateral Flow Immunoassay to Detect the Addition of Beef, Pork, Lamb, and Horse Muscles in Raw Meat Mixtures and Finished Meat Products. Foods, 2020, 9, 1662.	4.3	12
117	Changing Cross-Reactivity for Different Immunoassays Using the Same Antibodies: Theoretical Description and Experimental Confirmation. Applied Sciences (Switzerland), 2021, 11, 6581.	2.5	12
118	Tannic Acid-Capped Gold Nanoparticles as a Novel Nanozyme for Colorimetric Determination of Pb2+ Ions. Chemosensors, 2021, 9, 332.	3.6	12
119	DIRECT2: A novel platform for a CRISPR–Cas12-based assay comprising universal DNA–IgG probe and a direct lateral flow test. Biosensors and Bioelectronics, 2022, 208, 114227.	10.1	12
120	Development of Immunochromatographic Assay for Determination of Tetracycline in Human Serum. Antibiotics, 2018, 7, 99.	3.7	11
121	Immunochromatographic tests for the detection of microcystin-LR toxin in water and fish samples. Analytical Methods, 2020, 12, 392-400.	2.7	11
122	Mathematical modeling of immunochromatographic test systems in a competitive format: Analytical and numerical approaches. Biochemical Engineering Journal, 2020, 164, 107763.	3.6	11
123	Size-Dependent Differences in Biodistribution of Titanium Dioxide Nanoparticles After Sub-Acute Intragastric Administrations to Rats. Current Nanoscience, 2016, 12, 228-236.	1.2	11
124	Retention of Activity by Antibodies Immobilized on Gold Nanoparticles of Different Sizes: Fluorometric Method of Determination and Comparative Evaluation. Nanomaterials, 2021, 11, 3117.	4.1	11
125	Laccase from Coriolus hirsutus as Alternate Label for Enzyme Immunoassay: Determination of Pesticide 2,4-Dichlorophenoxyacetic Acid. Applied Biochemistry and Biotechnology, 1999, 76, 203-216.	2.9	10
126	Lateral flow immunoassay for rapid detection of potato ring rot caused by Clavibacter michiganensis subsp. sepedonicus. Applied Biochemistry and Microbiology, 2014, 50, 675-682.	0.9	10

#	Article	IF	CITATIONS
127	Immunochromatographic assay for serodiagnosis of tuberculosis using an antigen–colloidal gold conjugate. Applied Biochemistry and Microbiology, 2015, 51, 834-839.	0.9	10
128	Express Immunochromatographic Detection of Antibodies against <i>Brucella Abortus</i> ion Cattle Sera Based on Quantitative Photometric Registration and Modulated Cut-Off Level. Journal of Immunoassay and Immunochemistry, 2015, 36, 80-90.	1.1	10
129	Multiplex highly sensitive immunochromatographic assay based on the use of nonprocessed antisera. Analytical and Bioanalytical Chemistry, 2018, 410, 1903-1910.	3.7	10
130	Complexes of Gold Nanoparticles with Antibodies in Immunochromatography: Comparison of Direct and Indirect Immobilization of Antibodies for the Detection of Antibiotics. Nanotechnologies in Russia, 2018, 13, 430-438.	0.7	10
131	The Challenge for Rapid Detection of High-Structured Circular RNA: Assay of Potato Spindle Tuber Viroid Based on Recombinase Polymerase Amplification and Lateral Flow Tests. Plants, 2020, 9, 1369.	3.5	10
132	Network of gold conjugates for enhanced sensitive immunochromatographic assays of troponins. RSC Advances, 2021, 11, 16445-16452.	3.6	10
133	Ultrasensitive lateral flow immunoassay of phycotoxin microcystin-LR in seafood based on magnetic particles and peroxidase signal amplification. Food Control, 2022, 133, 108655.	5.5	10
134	Experimental study and mathematical modeling of the interaction between antibodies and antigens on the surface of liposomes. Molecular Immunology, 2002, 39, 413-422.	2.2	9
135	Chemiluminescence catalysed by gold nanoparticles for the analysis of arsenic (III) in real water. Journal of Experimental Nanoscience, 2016, 11, 1372-1383.	2.4	9
136	Development of a Lateral Flow Highway: Ultra-Rapid Multitracking Immunosensor for Cardiac Markers. Sensors, 2019, 19, 5494.	3.8	9
137	Ciprofloxacin and Clinafloxacin Antibodies for an Immunoassay of Quinolones: Quantitative Structure–Activity Analysis of Cross-Reactivities. International Journal of Molecular Sciences, 2019, 20, 265.	4.1	9
138	Highly sensitive lateral flow test with indirect labelling for zearalenone in baby food. Food and Agricultural Immunology, 2020, 31, 653-666.	1.4	9
139	Recombinase Polymerase Amplification Assay with and without Nuclease-Dependent-Labeled Oligonucleotide Probe. International Journal of Molecular Sciences, 2021, 22, 11885.	4.1	9
140	Rapid Full-Cycle Technique to Control Adulteration of Meat Products: Integration of Accelerated Sample Preparation, Recombinase Polymerase Amplification, and Test-Strip Detection. Molecules, 2021, 26, 6804.	3.8	9
141	Interaction Between Antibodies and Hapten-Protein Conjugates of Different Composition: Theoretical Predictions and Experimental Data. Journal of Immunoassay, 1997, 18, 67-95.	0.3	8
142	Immunochromatographic test system for the detection of T-2 toxin. Applied Biochemistry and Microbiology, 2015, 51, 688-694.	0.9	8
143	Enzyme immunoassay for detection of Sudan I dye and its application to the control of foodstuffs. Journal of Analytical Chemistry, 2016, 71, 944-948.	0.9	8
144	QSAR analysis of immune recognition for triazine herbicides based on immunoassay data for polyclonal and monoclonal antibodies. PLoS ONE, 2019, 14, e0214879.	2.5	8

#	Article	IF	CITATIONS
145	Colorimetric Technique for Antimony Detection Based on the Use of Gold Nanoparticles Conjugated with Poly-A Oligonucleotide. Applied Sciences (Switzerland), 2019, 9, 4782.	2.5	8
146	A Comparative Study of Approaches to Improve the Sensitivity of Lateral Flow Immunoassay of the Antibiotic Lincomycin. Biosensors, 2020, 10, 198.	4.7	8
147	Lateral flow immunoassay for rapid qualitative and quantitative control of the veterinary drug bacitracin in milk. Microchemical Journal, 2020, 156, 104884.	4.5	8
148	Comparative Study of Four Coloured Nanoparticle Labels in Lateral Flow Immunoassay. Nanomaterials, 2021, 11, 3277.	4.1	8
149	Probing the stereoselective interaction of ofloxacin enantiomers with corresponding monoclonal antibodies by multiple spectrometry. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 194, 83-91.	3.9	7
150	A Mechanism of Gold Nanoparticle Aggregation by Immunoglobulin G Preparation. Applied Sciences (Switzerland), 2020, 10, 475.	2.5	7
151	Lateral Flow Serodiagnosis in the Double-Antigen Sandwich Format: Theoretical Consideration and Confirmation of Advantages. Sensors, 2021, 21, 39.	3.8	7
152	Efficient chemiluminescence by aptamer – reactant platform combination with activated Ag–Au alloy nanoparticles for cobalt detection. International Journal of Environmental Analytical Chemistry, 2018, 98, 570-581.	3.3	6
153	Highly Sensitive Immunochromatographic Assay for Qualitative and Quantitative Control of Beta-Agonist Ractopamine in Foods. Applied Biochemistry and Microbiology, 2018, 54, 436-441.	0.9	6
154	Immunochromatographic System for Serodiagnostics of Cattle Brucellosis Using Gold Nanoparticles and Signal Amplification with Quantum Dots. Applied Sciences (Switzerland), 2020, 10, 738.	2.5	6
155	Immunochromatographic assay of T-2 toxin using labeled anti-species antibodies. Applied Biochemistry and Microbiology, 2017, 53, 594-599.	0.9	5
156	Study of Growth of Bare and Protein-Modified Gold Nanoparticles in the Presence of Hydroxylamine and Tetrachloroaurate. Nanotechnologies in Russia, 2018, 13, 614-622.	0.7	5
157	Lateral flow immunoassay for bisphenol A: Development of test strips and their application for ecological monitoring. Journal of Physics: Conference Series, 2019, 1172, 012088.	0.4	5
158	Comparison of Three Schemes of Quantum Dots-Based Immunochromatography for Serodiagnosis of Brucellosis in Cattle. Journal of Engineering and Applied Sciences, 2019, 14, 3711-3718.	0.2	5
159	Mercaptosuccinic-Acid-Functionalized Gold Nanoparticles for Highly Sensitive Colorimetric Sensing of Fe(III) Ions. Chemosensors, 2021, 9, 290.	3.6	5
160	Detection Limits of Immunoanalytical Systems: Limiting Factors and Methods of Reduction. Journal of Analytical Chemistry, 2022, 77, 391-401.	0.9	5
161	The registration of aptamer–ligand (ochratoxin A) interactions based on ligand fluorescence changes. Biochemical and Biophysical Research Communications, 2018, 505, 536-541.	2.1	4
162	Immunochromatographic Test Systems using Anti-Species Antibodies–Colloidal Gold Conjugate: Their Features and Benefits on the Example of Ochratoxin A Detection. Moscow University Chemistry Bulletin, 2018, 73, 63-68.	0.6	4

#	Article	IF	Citations
163	Development of an Immunoenzyme Assay to Control the Total Content of Antibiotics of the Fluoroquinolone Group in Milk. Applied Biochemistry and Microbiology, 2019, 55, 563-569.	0.9	4
164	Triple Immunochromatographic System for Simultaneous Serodiagnosis of Bovine Brucellosis, Tuberculosis, and Leukemia. Biosensors, 2019, 9, 115.	4.7	4
165	Development of Rapid Immunochromatographic Assay for D-dimer Detection. Applied Biochemistry and Microbiology, 2019, 55, 305-312.	0.9	4
166	Modulation of Aptamer–Ligand-Binding by Complementary Oligonucleotides: A G-Quadruplex Anti-Ochratoxin A Aptamer Case Study. International Journal of Molecular Sciences, 2022, 23, 4876.	4.1	4
167	Rapid detection of phycotoxin domoic acid in seawater and seafood based on the developed lateral flow immunoassay. Analytical Methods, 2022, 14, 2446-2452.	2.7	4
168	Novel Preparation of Gold Nanoparticles with Application for the Amperometric Determination of Arsenic. Analytical Letters, 2016, 49, 1388-1397.	1.8	3
169	Competitive photometric enzyme immunoassay for fullerene C60 and its derivatives using a fullerene conjugated to horseradish peroxidase. Mikrochimica Acta, 2016, 183, 211-217.	5.0	3
170	Comparative Characteristics of Nanodisperse Labels for Immunochromatographic Test Systems. Nano Hybrids and Composites, 2017, 13, 32-38.	0.8	3
171	Application of Gold Nanoparticles for High-Sensitivity Fluorescence Polarization Aptamer Assay for Ochratoxin A. Nanotechnologies in Russia, 2019, 14, 397-404.	0.7	3
172	Electron-Microscopic Investigation of the Distribution of Titanium Dioxide (rutile) Nanoparticles in the Rats' Small Intestine Mucosa, Liver, and Spleen. Current Nanoscience, 2020, 16, 268-279.	1.2	3
173	Simultaneous Immunochromatographic Assay of Several Antibiotics: Modulation of Detection Limits and Working Ranges. Oriental Journal of Chemistry, 2019, 35, 1634-1639.	0.3	3
174	Comparative Assessment of Different Gold Nanoflowers as Labels for Lateral Flow Immunosensors. Sensors, 2021, 21, 7098.	3.8	3
175	Double Competitive Immunodetection of Small Analyte: Realization for Highly Sensitive Lateral Flow Immunoassay of Chloramphenicol. Biosensors, 2022, 12, 343.	4.7	3
176	High-Sensitive Visually Controlled Membrane-Type Quantitation of NAD and Alkaline Phosphatase. Analytical Letters, 1994, 27, 2899-2916.	1.8	2
177	Development of microformat imaging microplate and membrane immunoenzyme assays of the herbicide atrazine. International Journal of Environmental Analytical Chemistry, 2005, 85, 905-915.	3.3	2
178	Magnetic Nanopartices as Carriers for Immunoassays. Nano Hybrids and Composites, 2017, 13, 54-62.	0.8	2
179	Enzyme-linked lectinosorbent assay of Escherichia coli and Staphylococcus aureus. Applied Biochemistry and Microbiology, 2017, 53, 107-113.	0.9	2
180	Development of Enzyme-Linked Immunosorbent Assay with Tiramine Amplification for the Detection of Potato Virus X. Applied Biochemistry and Microbiology, 2019, 55, 434-440.	0.9	2

#	Article	IF	Citations
181	Development of Immunoenzyme Assay for Detection of Soybean Raw Material in Food Products. Applied Biochemistry and Microbiology, 2020, 56, 483-487.	0.9	2
182	Management of Factors for Improving Antigen–Antibody Interaction in Lateral flow Immunoassay of Tetracycline in Human Serum Samples. Biomedical and Pharmacology Journal, 2019, 12, 17-24.	0.5	2
183	Double qualitative immunochromatographic test for simultaneous control of chicken muscles and eggs in food. Journal of Food Composition and Analysis, 2022, 106, 104324.	3.9	2
184	Comparative study of magnetic beads and microplates as supports in heterogeneous amplified assay of miRNA-141 by using mismatched catalytic hairpin assembly reaction. Talanta, 2022, 247, 123535.	5.5	2
185	Silent Antibodies Start Talking: Enhanced Lateral Flow Serodiagnosis with Two-Stage Incorporation of Labels into Immune Complexes. Biosensors, 2022, 12, 434.	4.7	2
186	Detection of Gold Nanoparticles in Rat Organs by Transmission Electron Microscopy. Bulletin of Experimental Biology and Medicine, 2016, 160, 817-822.	0.8	1
187	Comparative study of strategies for antibody immobilization onto the surface of magnetic particles in pseudo-homogeneous enzyme immunoassay of aflatoxin B1. Moscow University Chemistry Bulletin, 2016, 71, 48-53.	0.6	1
188	Quantitative regularities of protein immobilization on the surfaces of gold nanoparticles. AIP Conference Proceedings, 2020, , .	0.4	1
189	Development of mathematical models of lateral flow membrane bioanalytical systems and characterization of the regularities of their functioning. AIP Conference Proceedings, 2020, , .	0.4	1
190	Limitations for colorimetric aggregation assay of metal ions and ways of their overcoming. Analytical Methods, 2021, 13, 250-257.	2.7	1
191	Silver-enhanced lateral flow immunoassay for detection of microcystin-LR in drinking water. International Journal of Environmental Analytical Chemistry, 0, , 1-10.	3.3	1
192	Unexpected Electrophoretic Behavior of Complexes between Rod-like Virions and Bivalent Antibodies. Analytical Chemistry, 2016, 88, 11908-11912.	6.5	0
193	Comparison of nanosized markers in lateral flow immunoassay of antibiotic lincomycin., 2020,,.		0
194	Theoretical limitations for aggregation methods of analysis based on affine interactions. AIP Conference Proceedings, 2021, , .	0.4	0
195	Immunochromatographic Tests for Mycotoxins Detection with the Use of Ultrasmall Magnetite Nanoparticles. Engineering Proceedings, 2021, 2, .	0.4	0
196	Development of new immunoanalytical test systems for diagnostics of potato blackleg caused by Dickeya spp. bacteria. RUDN Journal of Agronomy and Animal Industries, 2021, 16, 198-214.	0.1	0
197	Impact of Immunogen Structure to Specificity of Fluoroquinolones Detection by Microplate and Lateral Flow Immunoassay Techniques. Biomedical and Pharmacology Journal, 2015, 8, 1389-1398.	0.5	0
198	Application of aminophenylboronic acid conjugated with protein carrier for aptachromatographic detection of lead ions. AIP Conference Proceedings, 2020, , .	0.4	0

#	Article	IF	CITATIONS
199	Development of Immunochromatographic Test System for Detection of Antibiotic Clinafloxacin and Its Application for Honey Control. Applied Biochemistry and Microbiology, 2021, 57, 778-785.	0.9	0
200	Lateral flow test strips for mercury ions detection based on combination of oligonucleotide-modified gold nanoparticles and chelation by glutathione. AIP Conference Proceedings, $2021, \ldots$	0.4	0
201	Highly sensitive multiplex lateral flow immunoassay of phytopathogens using Au@Pt nanoparticles as the colorimetric and catalytic label. AIP Conference Proceedings, 2021, , .	0.4	0
202	Gold Nanoparticles Functionalized with Mercaptosuccinic Acid as a Means for Detecting Fe(III) lons. , 2021, 5 , .		0
203	Conjugates of Immunoglobulin-Binding Protein and Gold Nanoparticle: Determination of Composition and Application in Immunochromatographic Analysis of Sulfonylamide. Applied Biochemistry and Microbiology, 2022, 58, 77-82.	0.9	O