
Brian G Monks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9100108/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficacy and Pharmacology of the NLRP3 Inflammasome Inhibitor CP-456,773 (CRID3) in Murine Models of Dermal and Pulmonary Inflammation. Journal of Immunology, 2016, 197, 2421-2433.	0.8	138
2	A Fluorescent Reporter Mouse for Inflammasome Assembly Demonstrates an Important Role for Cell-Bound and Free ASC Specks during InÂVivo Infection. Cell Reports, 2016, 16, 571-582.	6.4	99
3	A Novel Factor H–Fc Chimeric Immunotherapeutic Molecule against <i>Neisseria gonorrhoeae</i> . Journal of Immunology, 2016, 196, 1732-1740.	0.8	35
4	A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nature Medicine, 2015, 21, 248-255.	30.7	1,967
5	RNA and β-Hemolysin of Group B Streptococcus Induce Interleukin-1β (IL-1β) by Activating NLRP3 Inflammasomes in Mouse Macrophages. Journal of Biological Chemistry, 2014, 289, 13701-13705.	3.4	62
6	The adaptor ASC has extracellular and 'prionoid' activities that propagate inflammation. Nature Immunology, 2014, 15, 727-737.	14.5	651
7	A Long Noncoding RNA Mediates Both Activation and Repression of Immune Response Genes. Science, 2013, 341, 789-792.	12.6	925
8	ASC Speck Formation as a Readout for Inflammasome Activation. Methods in Molecular Biology, 2013, 1040, 91-101.	0.9	257
9	iGLuc: a luciferase-based inflammasome and protease activity reporter. Nature Methods, 2013, 10, 147-154.	19.0	65
10	Chemical genetics reveals a kinase-independent role for protein kinase R in pyroptosis. Nature Chemical Biology, 2013, 9, 398-405.	8.0	76
11	Mouse, but not Human STING, Binds and Signals in Response to the Vascular Disrupting Agent 5,6-Dimethylxanthenone-4-Acetic Acid. Journal of Immunology, 2013, 190, 5216-5225.	0.8	334
12	A novel factor H-FC chimeric immunotherapeutic molecule against Neisseria gonorrhoeae. Immunobiology, 2012, 217, 1131.	1.9	0
13	Natural Loss-of-function Mutation of Myeloid Differentiation Protein 88 Disrupts Its Ability to Form Myddosomes. Journal of Biological Chemistry, 2011, 286, 11875-11882.	3.4	34
14	Molecular Characterization of the Interaction between Sialylated Neisseria gonorrhoeae and Factor H. Journal of Biological Chemistry, 2011, 286, 22235-22242.	3.4	27
15	The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nature Immunology, 2010, 11, 395-402.	14.5	1,113
16	MD-2 Residues Tyrosine 42, Arginine 69, Aspartic Acid 122, and Leucine 125 Provide Species Specificity for Lipid IVA. Journal of Biological Chemistry, 2010, 285, 27935-27943.	3.4	39
17	Cell Type-Specific Recognition of Human Metapneumoviruses (HMPVs) by Retinoic Acid-Inducible Gene I (RIG-I) and TLR7 and Viral Interference of RIG-I Ligand Recognition by HMPV-B1 Phosphoprotein. Journal of Immunology, 2010, 184, 1168-1179.	0.8	58
18	Cutting Edge: NF-κB Activating Pattern Recognition and Cytokine Receptors License NLRP3 Inflammasome Activation by Regulating NLRP3 Expression. Journal of Immunology, 2009, 183, 787-791.	0.8	2,281

BRIAN G MONKS

#	Article	IF	CITATIONS
19	A TIR Domain Variant of MyD88 Adapter-like (Mal)/TIRAP Results in Loss of MyD88 Binding and Reduced TLR2/TLR4 Signaling. Journal of Biological Chemistry, 2009, 284, 25742-25748.	3.4	62
20	The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nature Immunology, 2008, 9, 857-865.	14.5	2,047
21	Molecular characterisation of the interaction between porins of Neisseria gonorrhoeae and factor H. Molecular Immunology, 2008, 45, 4169.	2.2	Ο
22	Human Factor H Interacts Selectively with <i>Neisseria gonorrhoeae</i> and Results in Species-Specific Complement Evasion. Journal of Immunology, 2008, 180, 3426-3435.	0.8	109
23	Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1919-1924.	7.1	468
24	Serum resistance of Neisseria gonorrhoeae is restricted to humans; a possible explanation for the species specificity of gonococcal infections. Molecular Immunology, 2007, 44, 220.	2.2	0
25	Ligand-induced conformational changes allosterically activate Toll-like receptor 9. Nature Immunology, 2007, 8, 772-779.	14.5	406
26	MD-2. Immunobiology, 2006, 211, 437-447.	1.9	61
27	MD-2 expression is not required for cell surface targeting of Toll-like receptor 4 (TLR4). Journal of Leukocyte Biology, 2006, 80, 1584-1592.	3.3	36
28	The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6299-6304.	7.1	238
29	The RNA Helicase Lgp2 Inhibits TLR-Independent Sensing of Viral Replication by Retinoic Acid-Inducible Gene-I. Journal of Immunology, 2005, 175, 5260-5268.	0.8	517
30	Pharmacological Inhibition of Endotoxin Responses Is Achieved by Targeting the TLR4 Coreceptor, MD-2. Journal of Immunology, 2005, 175, 6465-6472.	0.8	139
31	TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nature Immunology, 2004, 5, 190-198.	14.5	1,225
32	Lysines 128 and 132 Enable Lipopolysaccharide Binding to MD-2, Leading to Toll-like Receptor-4 Aggregation and Signal Transduction. Journal of Biological Chemistry, 2003, 278, 48313-48320.	3.4	226
33	Cell Distributions and Functions of Toll-like Receptor 4 Studied by Fluorescent Gene Constructs. Scandinavian Journal of Infectious Diseases, 2003, 35, 660-664.	1.5	28
34	LPS-TLR4 Signaling to IRF-3/7 and NF-κB Involves the Toll Adapters TRAM and TRIF. Journal of Experimental Medicine, 2003, 198, 1043-1055.	8.5	1,053
35	Lipopolysaccharide Rapidly Traffics to and from the Golgi Apparatus with the Toll-like Receptor 4-MD-2-CD14 Complex in a Process That Is Distinct from the Initiation of Signal Transduction. Journal of Biological Chemistry, 2002, 277, 47834-47843.	3.4	398
36	Involvement of Toll-like Receptor (TLR) 2 and TLR4 in Cell Activation by Mannuronic Acid Polymers. Journal of Biological Chemistry, 2002, 277, 35489-35495.	3.4	178

BRIAN G MONKS

#	Article	IF	CITATIONS
37	C4bp binding to porin mediates stable serum resistance of Neisseria gonorrhoeae. International Immunopharmacology, 2001, 1, 423-432.	3.8	42
38	Binding of C4b-Binding Protein to Porin. Journal of Experimental Medicine, 2001, 193, 281-296.	8.5	186
39	Molecular Genetic Analysis of an Endotoxin Nonresponder Mutant Cell Line. Journal of Experimental Medicine, 2001, 194, 79-88.	8.5	269
40	Divergent Response to LPS and Bacteria in CD14-Deficient Murine Macrophages. Journal of Immunology, 2000, 165, 4272-4280.	0.8	205
41	Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. Journal of Clinical Investigation, 2000, 105, 497-504.	8.2	678
42	Bacterial Lipopolysaccharide Induces Expression of the Stress Response Genes hop and H411. Journal of Biological Chemistry, 1999, 274, 21049-21055.	3.4	36
43	Membrane Expression of Soluble Endotoxin-binding Proteins Permits Lipopolysaccharide Signaling in Chinese Hamster Ovary Fibroblasts Independently of CD14. Journal of Biological Chemistry, 1999, 274, 13993-13998.	3.4	6
44	Targeted Deletion of the Lipopolysaccharide (LPS)-binding Protein Gene Leads to Profound Suppression of LPS Responses Ex Vivo, whereas In Vivo Responses Remain Intact. Journal of Experimental Medicine, 1997, 186, 2051-2056.	8.5	171
45	An upstream protein interacts with a distinct protein that binds to the cap site of the human interleukin $1\hat{l}^2$ gene. Molecular Immunology, 1994, 31, 139-151.	2.2	24