Timothy J Moroney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9100036/publications.pdf

Version: 2024-02-01

471509 526287 39 808 17 27 citations h-index g-index papers 39 39 39 591 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Kelvin wake pattern at small Froude numbers. Journal of Fluid Mechanics, 2021, 915, .	3.4	11
2	A REVIEW OF ONE-PHASE HELE-SHAW FLOWS AND A LEVEL-SET METHOD FOR NONSTANDARD CONFIGURATIONS. ANZIAM Journal, 2021, 63, 269-307.	0.2	7
3	Implicit reconstructions of thin leaf surfaces from large, noisy point clouds. Applied Mathematical Modelling, 2021, 98, 416-434.	4.2	4
4	Spectrogram analysis of surface elevation signals due to accelerating ships. Physical Review Fluids, 2021, 6, .	2.5	2
5	Hole-closing model reveals exponents for nonlinear degenerate diffusivity functions in cell biology. Physica D: Nonlinear Phenomena, 2019, 398, 130-140.	2.8	39
6	Moving Boundary Problems for Quasi-Steady Conduction Limited Melting. SIAM Journal on Applied Mathematics, 2019, 79, 2107-2131.	1.8	8
7	Numerical investigation of controlling interfacial instabilities in non-standard Hele-Shaw configurations. Journal of Fluid Mechanics, 2019, 877, 1063-1097.	3.4	44
8	Three-dimensional free-surface flow over arbitrary bottom topography. Journal of Fluid Mechanics, 2018, 846, 166-189.	3.4	11
9	Efficient computation of twoâ€dimensional steady freeâ€surface flows. International Journal for Numerical Methods in Fluids, 2018, 86, 607-624.	1.6	9
10	Time-frequency analysis of ship wave patterns in shallow water: modelling and experiments. Ocean Engineering, 2018, 158, 123-131.	4.3	24
11	A finite volume method for two-sided fractional diffusion equations on non-uniform meshes. Journal of Computational Physics, 2017, 335, 747-759.	3.8	41
12	Using population of models to investigate and quantify gas production in a spatially heterogeneous coal seam gas field. Applied Mathematical Modelling, 2017, 49, 338-353.	4.2	2
13	Spectrograms of ship wakes: identifying linear and nonlinear wave signals. Journal of Fluid Mechanics, 2017, 811, 189-209.	3.4	25
14	Extending fields in a level set method by solving a biharmonic equation. Journal of Computational Physics, 2017, 343, 170-185.	3.8	11
15	GPU Accelerated Algorithms for Computing Matrix Function Vector Products with Applications to Exponential Integrators and Fractional Diffusion. SIAM Journal of Scientific Computing, 2016, 38, C127-C149.	2.8	12
16	Simulating droplet motion on virtual leaf surfaces. Royal Society Open Science, 2015, 2, 140528.	2.4	14
17	Wake angle for surface gravity waves on a finite depth fluid. Physics of Fluids, 2015, 27, .	4.0	13
18	Saffman-Taylor fingers with kinetic undercooling. Physical Review E, 2015, 91, 023016.	2.1	10

#	Article	IF	Citations
19	A preconditioned numerical solver for stiff nonlinear reaction–diffusion equations with fractional Laplacians that avoids dense matrices. Journal of Computational Physics, 2015, 287, 254-268.	3.8	16
20	Discrete families of Saffman–Taylor fingers with exotic shapes. Results in Physics, 2015, 5, 103-104.	4.1	6
21	Mathematical modelling of gas production and compositional shift of a CSG (coal seam gas) field: Local model development. Energy, 2015, 88, 621-635.	8.8	10
22	What is the apparent angle of a Kelvin ship wave pattern?. Journal of Fluid Mechanics, 2014, 758, 468-485.	3.4	46
23	A finite volume scheme with preconditioned Lanczos method for two-dimensional space-fractional reaction–diffusion equations. Applied Mathematical Modelling, 2014, 38, 3755-3762.	4.2	62
24	Jacobian-free Newton–Krylov methods with GPU acceleration for computing nonlinear ship wave patterns. Journal of Computational Physics, 2014, 269, 297-313.	3.8	21
25	The effect of surface tension and kinetic undercooling on a radially-symmetric melting problem. Applied Mathematics and Computation, 2014, 229, 41-52.	2,2	29
26	Stability and convergence of a finite volume method for the space fractional advection–dispersion equation. Journal of Computational and Applied Mathematics, 2014, 255, 684-697.	2.0	99
27	Including nonequilibrium interface kinetics in a continuum model for melting nanoscaled particles. Scientific Reports, 2014, 4, 7066.	3.3	24
28	A banded preconditioner for the two-sided, nonlinear space-fractional diffusion equation. Computers and Mathematics With Applications, 2013, 66, 659-667.	2.7	23
29	Efficient solution of two-sided nonlinear space-fractional diffusion equations using fast Poisson preconditioners. Journal of Computational Physics, 2013, 246, 304-317.	3.8	26
30	A finite volume method for solving the two-sided time-space fractional advection-dispersion equation. Open Physics, 2013, 11 , .	1.7	15
31	Gravity-driven fingering simulations for a thin liquid film flowing down the outside of a vertical cylinder. Physical Review E, 2013, 87, 053018.	2.1	36
32	Asymptotic and Numerical Results for a Model of Solvent-Dependent Drug Diffusion through Polymeric Spheres. SIAM Journal on Applied Mathematics, 2011, 71, 2287-2311.	1.8	33
33	Efficient simulation of unsaturated flow using exponential time integration. Applied Mathematics and Computation, 2011, 217, 6587-6596.	2.2	14
34	A three-dimensional finite volume method based on radial basis functions for the accurate computational modelling of nonlinear diffusion equations. Journal of Computational Physics, 2007, 225, 1409-1426.	3.8	21
35	A finite volume method based on radial basis functions for two-dimensional nonlinear diffusion equations. Applied Mathematical Modelling, 2006, 30, 1118-1133.	4.2	27
36	Numerical study of two ill-posed one phase Stefan problems. ANZIAM Journal, 0, 52, 430.	0.0	5

#	Article	IF	CITATIONS
37	Drug diffusion from polymeric delivery devices: a problem with two moving boundaries. ANZIAM Journal, 0, 52, 549.	0.0	4
38	Numerical solutions for thin film flow down the outside and inside of a vertical cylinder. ANZIAM Journal, 0, 54, 377.	0.0	1
39	A review of one-phase Hele-Shaw flows and a level-set method for nonstandard configurations. ANZIAM Journal, 0, 63, 269-307.	0.0	3