Stavros Garantziotis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9099652/publications.pdf

Version: 2024-02-01

71102 58581 7,319 127 41 82 citations h-index g-index papers 132 132 132 11704 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Common <i>MUC5B</i> Promoter Polymorphism and Pulmonary Fibrosis. New England Journal of Medicine, 2011, 364, 1503-1512.	27.0	986
2	A mechanistic role for cardiac myocyte apoptosis in heart failure. Journal of Clinical Investigation, 2003, 111, 1497-1504.	8.2	639
3	In utero supplementation with methyl donors enhances allergic airway disease in mice. Journal of Clinical Investigation, 2008, 118, 3462-9.	8.2	361
4	Size Matters: Molecular Weight Specificity of Hyaluronan Effects in Cell Biology. International Journal of Cell Biology, 2015, 2015, 1-8.	2.5	293
5	Monitoring Indoor Exposure to Organophosphate Flame Retardants: Hand Wipes and House Dust. Environmental Health Perspectives, 2015, 123, 160-165.	6.0	265
6	Pharmacokinetics of bisphenol A in humans following a single oral administration. Environment International, 2015, 83, 107-115.	10.0	245
7	Hyaluronan biology: A complex balancing act of structure, function, location and context. Matrix Biology, 2019, 78-79, 1-10.	3.6	222
8	Cerium Dioxide Nanoparticles Induce Apoptosis and Autophagy in Human Peripheral Blood Monocytes. ACS Nano, 2012, 6, 5820-5829.	14.6	203
9	Bisphenol A, Bisphenol S, and 4-Hydro‫xyphenyl 4-Isopro‫oxyphenyl‫sulfone (BPSIP) in Urine and Blood of Cashiers. Environmental Health Perspectives, 2016, 124, 437-444.	6.0	169
10	Prevention and treatment of acute radiation-induced skin reactions: a systematic review and meta-analysis of randomized controlled trials. BMC Cancer, 2014, 14, 53.	2.6	163
11	p53 and NF-κB Coregulate Proinflammatory Gene Responses in Human Macrophages. Cancer Research, 2014, 74, 2182-2192.	0.9	140
12	In utero supplementation with methyl donors enhances allergic airway disease in mice. Journal of Clinical Investigation, 2016, 126, 2012-2012.	8.2	128
13	The Toll-Like Receptor Gene Family Is Integrated into Human DNA Damage and p53 Networks. PLoS Genetics, 2011, 7, e1001360.	3.5	126
14	Mechanical Stretch Induces Epithelial-Mesenchymal Transition in Alveolar Epithelia via Hyaluronan Activation of Innate Immunity. Journal of Biological Chemistry, 2011, 286, 17435-17444.	3.4	123
15	Influenza Pneumonia in Lung Transplant Recipients. Chest, 2001, 119, 1277-1280.	0.8	114
16	Inflammasome activation in airway epithelial cells after multi-walled carbon nanotube exposure mediates a profibrotic response in lung fibroblasts. Particle and Fibre Toxicology, 2014, 11, 28.	6.2	109
17	Hyaluronan Mediates Ozone-induced Airway Hyperresponsiveness in Mice. Journal of Biological Chemistry, 2009, 284, 11309-11317.	3.4	108
18	The Toll-like receptor 5 ligand flagellin promotes asthma by priming allergic responses to indoor allergens. Nature Medicine, 2012, 18, 1705-1710.	30.7	106

#	Article	IF	CITATIONS
19	The yin: an adverse health perspective of nanoceria: uptake, distribution, accumulation, and mechanisms of its toxicity. Environmental Science: Nano, 2014, 1, 406-428.	4.3	106
20	Formation of reactive sulfite-derived free radicals by the activation of human neutrophils: An ESR study. Free Radical Biology and Medicine, 2012, 52, 1264-1271.	2.9	105
21	Methods in Lung Microbiome Research. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 283-299.	2.9	94
22	TLR4 Is Necessary for Hyaluronan-mediated Airway Hyperresponsiveness after Ozone Inhalation. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 666-675.	5.6	88
23	Alemtuzumab in the Treatment of Refractory Acute Rejection and Bronchiolitis Obliterans Syndrome After Human Lung Transplantation. American Journal of Transplantation, 2007, 7, 2802-2808.	4.7	80
24	The Effect of Toll-Like Receptors and Toll-Like Receptor Genetics in Human Disease. Annual Review of Medicine, 2008, 59, 343-359.	12.2	74
25	Urinary Tetrabromobenzoic Acid (TBBA) as a Biomarker of Exposure to the Flame Retardant Mixture Firemaster ^[®] 550. Environmental Health Perspectives, 2014, 122, 963-969.	6.0	73
26	Association of a COL1A1 polymorphism with lumbar disc disease in young military recruits. Journal of Medical Genetics, 2005, 42, e44-e44.	3.2	72
27	Identification of fipronil metabolites by time-of-flight mass spectrometry for application in a human exposure study. Environment International, 2015, 78, 16-23.	10.0	70
28	Inter-α-Trypsin Inhibitor Attenuates Complement Activation and Complement-Induced Lung Injury. Journal of Immunology, 2007, 179, 4187-4192.	0.8	69
29	Ambient Ozone Primes Pulmonary Innate Immunity in Mice. Journal of Immunology, 2007, 179, 4367-4375.	0.8	65
30	The role of hyaluronan in the pathobiology and treatment of respiratory disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L785-L795.	2.9	63
31	Therapeutic responses to <i>Roseomonas mucosa</i> in atopic dermatitis may involve lipid-mediated TNF-related epithelial repair. Science Translational Medicine, 2020, 12, .	12.4	63
32	Hyaluronan Signaling during Ozone-Induced Lung Injury Requires TLR4, MyD88, and TIRAP. PLoS ONE, 2011, 6, e27137.	2.5	62
33	The Rise and Fall of Hyaluronan in Respiratory Diseases. International Journal of Cell Biology, 2015, 2015, 1-15.	2.5	62
34	CD44 Regulates Macrophage Recruitment to the Lung in Lipopolysaccharide-Induced Airway Disease. American Journal of Respiratory Cell and Molecular Biology, 2007, 37, 248-253.	2.9	59
35	Hyaluronan mediates airway hyperresponsiveness in oxidative lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L891-L903.	2.9	59
36	CD44 Plays a Critical Role in Regulating Diet-Induced Adipose Inflammation, Hepatic Steatosis, and Insulin Resistance. PLoS ONE, 2013, 8, e58417.	2.5	55

3

#	Article	IF	CITATIONS
37	Atomic Layer Deposition Coating of Carbon Nanotubes with Aluminum Oxide Alters Pro-Fibrogenic Cytokine Expression by Human Mononuclear Phagocytes In Vitro and Reduces Lung Fibrosis in Mice In Vivo. PLoS ONE, 2014, 9, e106870.	2.5	51
38	TLR5 participates in the TLR4 receptor complex and promotes MyD88-dependent signaling in environmental lung injury. ELife, 2020, 9, .	6.0	51
39	Serum Inter–α-Trypsin Inhibitor and Matrix Hyaluronan Promote Angiogenesis in Fibrotic Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 939-947.	5.6	49
40	Aryl Hydrocarbon Receptor-Induced Adrenomedullin Mediates Cigarette Smoke Carcinogenicity in Humans and Mice. Cancer Research, 2012, 72, 5790-5800.	0.9	47
41	Integrating Health Research into Disaster Response: The New NIH Disaster Research Response Program. International Journal of Environmental Research and Public Health, 2016, 13, 676.	2.6	47
42	Cyclooxygenase-2 Inhibits T Helper Cell Type 9 Differentiation during Allergic Lung Inflammation via Down-regulation of IL-17RB. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 812-822.	5.6	44
43	CD14 is an essential mediator of LPS-induced airway disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L77-L83.	2.9	43
44	Midgut Laterality Is Driven by Hyaluronan on the Right. Developmental Cell, 2018, 46, 533-551.e5.	7.0	42
45	Alloimmune Lung Injury Induced by Local Innate Immune Activation Through Inhaled Lipopolysaccharide. Transplantation, 2007, 84, 1012-1019.	1.0	41
46	Intracellular Signal Modulation by Nanomaterials. Advances in Experimental Medicine and Biology, 2014, 811, 111-134.	1.6	41
47	Multiwalled Carbon Nanotube Functionalization with High Molecular Weight Hyaluronan Significantly Reduces Pulmonary Injury. ACS Nano, 2016, 10, 7675-7688.	14.6	41
48	Identification of Biomarkers of Exposure to FTOHs and PAPs in Humans Using a Targeted and Nontargeted Analysis Approach. Environmental Science & Envir	10.0	40
49	Pulmonary fibrosis: thinking outside of the lung. Journal of Clinical Investigation, 2004, 114, 319-321.	8.2	39
50	Sulfite-mediated oxidation of myeloperoxidase to a free radical: Immuno-spin trapping detection in human neutrophils. Free Radical Biology and Medicine, 2013, 60, 98-106.	2.9	37
51	Interplay between apoptotic and autophagy pathways after exposure to cerium dioxide nanoparticles in human monocytes. Autophagy, 2013, 9, 101-103.	9.1	37
52	Cholesterol-25-hydroxylase promotes efferocytosis and resolution of lung inflammation. JCI Insight, 2020, 5, .	5.0	35
53	Inter-α-trypsin Inhibitor Promotes Bronchial Epithelial Repair after Injury through Vitronectin Binding. Journal of Biological Chemistry, 2009, 284, 16922-16930.	3.4	34
54	Hyaluronan interactions with innate immunity in lung biology. Matrix Biology, 2019, 78-79, 84-99.	3.6	34

#	Article	IF	CITATIONS
55	Leukocyte-Derived IL-10 Reduces Subepithelial Fibrosis Associated with Chronically Inhaled Endotoxin. American Journal of Respiratory Cell and Molecular Biology, 2006, 35, 662-667.	2.9	33
56	INO80 is required for oncogenic transcription and tumor growth in non-small cell lung cancer. Oncogene, 2017, 36, 1430-1439.	5.9	33
57	Inter-α-Inhibitor Blocks Epithelial Sodium Channel Activation and Decreases Nasal Potential Differences in ΔF508 Mice. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 953-962.	2.9	30
58	Inter-α-inhibitor Ameliorates Endothelial Inflammation in Sepsis. Lung, 2019, 197, 361-369.	3.3	30
59	Ecogenomics of Respiratory Diseases of Public Health Significance. Annual Review of Public Health, 2010, 31, 37-51.	17.4	26
60	Multiwalled carbon nanotubes induce altered morphology and loss of barrier function in human bronchial epithelium at noncytotoxic doses. International Journal of Nanomedicine, 2014, 9, 4093.	6.7	26
61	Inhaled high molecular weight hyaluronan ameliorates respiratory failure in acute COPD exacerbation: a pilot study. Respiratory Research, 2021, 22, 30.	3.6	26
62	TNF-stimulated gene 6 promotes formation of hyaluronanâ€"inter-α-inhibitor heavy chain complexes necessary for ozone-induced airway hyperresponsiveness. Journal of Biological Chemistry, 2017, 292, 20845-20858.	3.4	24
63	Pulmonary fibrosis: thinking outside of the lung. Journal of Clinical Investigation, 2004, 114, 319-321.	8.2	22
64	Cerium dioxide nanoparticles do not modulate the lipopolysaccharide-induced inflammatory response in human monocytes. International Journal of Nanomedicine, 2012, 7, 1387.	6.7	21
65	Instillation of hyaluronan reverses acid instillation injury to the mammalian blood gas barrier. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L808-L821.	2.9	20
66	Rapid clearance of heavy chain-modified hyaluronan during resolving acute lung injury. Respiratory Research, 2018, 19, 107.	3.6	19
67	Bakery flour dust exposure causes non-allergic inflammation and enhances allergic airway inflammation in mice. Clinical and Experimental Allergy, 2008, 38, 1526-1535.	2.9	17
68	Innate immune activation potentiates alloimmune lung disease independent of chemokine (C-X-C motif) receptor 3. Journal of Heart and Lung Transplantation, 2011, 30, 717-725.	0.6	17
69	Respiratory syncytial virus infection increases chlorine-induced airway hyperresponsiveness. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L205-L210.	2.9	17
70	Interâ€i±â€inhibitor deficiency in the mouse is associated with alterations in anxietyâ€like behavior, exploration and social approach. Genes, Brain and Behavior, 2019, 18, e12505.	2.2	17
71	Multi-walled carbon nanotubes upregulate mitochondrial gene expression and trigger mitochondrial dysfunction in primary human bronchial epithelial cells. Nanotoxicology, 2019, 13, 1344-1361.	3.0	17
72	Effects of inhaled high-molecular weight hyaluronan in inflammatory airway disease. Respiratory Research, 2016, 17, 123.	3.6	16

#	Article	IF	CITATIONS
73	Toll-like Receptor 4 Pathway Polymorphisms Interact with Pollution to Influence Asthma Diagnosis and Severity. Scientific Reports, 2018, 8, 12713.	3.3	16
74	Critical care of the head and neck patient. Critical Care Clinics, 2003, 19, 73-90.	2.6	15
75	The extracellular matrix protein mindin regulates trafficking of murine eosinophils into the airspace. Journal of Leukocyte Biology, 2008, 85, 124-131.	3.3	15
76	ONE Nano: NIEHS's Strategic Initiative on the Health and Safety Effects of Engineered Nanomaterials. Environmental Health Perspectives, 2013, 121, 410-414.	6.0	14
77	High molecular weight hyaluronan ameliorates allergic inflammation and airway hyperresponsiveness in the mouse. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L787-L798.	2.9	14
78	Upregulation of airway smooth muscle calcium-sensing receptor by low-molecular-weight hyaluronan. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L459-L471.	2.9	14
79	Host-Environment Interactions in Pulmonary Fibrosis. Seminars in Respiratory and Critical Care Medicine, 2006, 27, 574-580.	2.1	13
80	The Environmental Polymorphism Registry: A Unique Resource that Facilitates Translational Research of Environmental Disease. Environmental Health Perspectives, 2011, 119, 1523-1527.	6.0	13
81	Healthy glucocorticoid receptor N363S carriers dysregulate gene expression associated with metabolic syndrome. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E741-E748.	3.5	13
82	IL-17A Recruits Rab35 to IL-17R to Mediate PKCα-Dependent Stress Fiber Formation and Airway Smooth Muscle Contractility. Journal of Immunology, 2019, 202, 1540-1548.	0.8	13
83	An Unwelcome Guest: Aspergillus Colonization in Lung Transplantation and Its Association with Bronchiolitis Obliterans Syndrome. American Journal of Transplantation, 2009, 9, 1705-1706.	4.7	12
84	Bronchial epithelial injury in the context of alloimmunity promotes lymphocytic bronchiolitis through hyaluronan expression. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L1045-L1055.	2.9	12
85	Decreased Uptake and Enhanced Mitochondrial Protection Underlie Reduced Toxicity of Nanoceria in Human Monocyte-Derived Macrophages. Journal of Biomedical Nanotechnology, 2016, 12, 2139-2150.	1.1	11
86	TLR5 Activation Exacerbates Airway Inflammation in Asthma. Lung, 2020, 198, 289-298.	3.3	10
87	Lung function in oil spill responders 4-6 years after the Deepwater Horizon disaster. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2020, 83, 233-248.	2.3	10
88	sEH promotes macrophage phagocytosis and lung clearance of Streptococcus pneumoniae. Journal of Clinical Investigation, $2021, 131, \ldots$	8.2	10
89	Proteoglycans in Toll-like receptor responses and innate immunity. American Journal of Physiology - Cell Physiology, 2022, 323, C202-C214.	4.6	10
90	Sugarcoating Lung Injury: A Novel Role for High-Molecular-Weight Hyaluronan in Pneumonia. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 1197-1198.	5.6	8

#	Article	IF	CITATIONS
91	Hyaluronan and halogenâ€induced airway hyperresponsiveness and lung injury. Annals of the New York Academy of Sciences, 2020, 1479, 29-43.	3.8	8
92	Impaired Ciliogenesis in differentiating human bronchial epithelia exposed to non-Cytotoxic doses of multi-walled carbon Nanotubes. Particle and Fibre Toxicology, 2017, 14, 44.	6.2	7
93	Transethnic associations among immune-mediated diseases and single-nucleotide polymorphisms of the aryl hydrocarbon response gene ARNT and the PTPN22 immune regulatory gene. Journal of Autoimmunity, 2020, 107, 102363.	6.5	7
94	Modulation of hyaluronan signaling as a therapeutic target in human disease., 2022, 232, 107993.		7
95	Allogeneic Splenocyte Transfer and Lipopolysaccharide Inhalations Induce Differential T Cell Expansion and Lung Injury: A Novel Model of Pulmonary Graft-versus-Host Disease. PLoS ONE, 2014, 9, e97951.	2.5	6
96	Fatal Re-Expansion Pulmonary Edema Associated with Increased Lung IL-8 Levels following High-Dose Chemotherapy and Autologous Stem Cell Transplant. Respiration, 2002, 69, 351-354.	2.6	5
97	A novel role for primary cilia in airway remodeling. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L328-L338.	2.9	5
98	Generating diversity in human glucocorticoid signaling through a racially diverse polymorphism in the beta isoform of the glucocorticoid receptor. Laboratory Investigation, 2017, 97, 1282-1295.	3.7	5
99	Targeted <i>HAS2</i> Expression Lessens Airway Responsiveness in Chronic Murine Allergic Airway Disease. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 702-710.	2.9	5
100	Translator Exposure APIs: Open Access to Data on Airborne Pollutant Exposures, Roadway Exposures, and Socio-Environmental Exposures and Use Case Application. International Journal of Environmental Research and Public Health, 2020, 17, 5243.	2.6	5
101	Evaluating genome-wide DNA methylation changes in mice by Methylation Specific Digital Karyotyping. BMC Genomics, 2008, 9, 598.	2.8	4
102	Mapping differential cellular protein response of mouse alveolar epithelial cells to multi-walled carbon nanotubes as a function of atomic layer deposition coating. Nanotoxicology, 2017, 11, 313-326.	3.0	4
103	Intravascular heavy chain-modification of hyaluronan during endotoxic shock. Biochemistry and Biophysics Reports, 2019, 17, 114-121.	1.3	4
104	Cholestenoic acid is a prognostic biomarker in acute respiratory distress syndrome. Journal of Allergy and Clinical Immunology, 2019, 143, 440-442.e8.	2.9	4
105	A novel, non-functional, COL1A1 polymorphism is not associated with lumbar disk disease in young male Greek subjects unlike that of the Sp1 site. Hormones, 2008, 7, 251-254.	1.9	3
106	Modulation of plasma complement by the initial dose of epirubicin/docetaxel therapy in breast cancer and its predictive value. British Journal of Cancer, 2011, 104, 542-542.	6.4	3
107	The Lung Microbiome in Health, Hypersensitivity Pneumonitis, and Idiopathic Pulmonary Fibrosis: A Heavy Bacterial Burden to Bear. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 281-283.	5.6	3
108	Comment on Expression of Concern: TLR4 Is Necessary for Hyaluronan-mediated Airway Hyperresponsiveness after Ozone Inhalation. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 249-250.	5.6	2

#	Article	IF	CITATIONS
109	Assessment of Ozone-Induced Lung Injury in Mice. Methods in Molecular Biology, 2018, 1809, 301-314.	0.9	2
110	Genetics and genomics in human lung transplantation. Expert Review of Respiratory Medicine, 2007, 1, 271-278.	2.5	1
111	Inflammation Gets on the Lung's Nerves: IL-17 and Neuroendocrine Cells Mediate Ozone Responses in Obesity. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 284-285.	2.9	1
112	Myofibroblast–Macrophage Interactions Turn Sour in Fibrotic Lungs. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 14-15.	2.9	1
113	Control of Bleomycin Induced Fibrosis by Muc5ac Production and Mucociliary Clearance, 2009, , .		0
114	CXCR3-Chemokine Pathway in a Model of Murine Alloimmune Lymphocytic Bronchiolitis (AlloLB) , 2009, , .		0
115	Hyaluronan Causes Sustained Human Airway Myocyte Contraction. , 2010, , .		0
116	Blockade Of Hyaluronan Binding Abolishes Airway Hyperresponsiveness In Mouse Asthma Models. , 2010, , .		0
117	Cerium Oxide Nanoparticles Have Toxic Effects On Lung Cells. , 2011, , .		0
118	The TLR5 Ligand, Bacterial Flagellin, Is The Major Adjuvant In Common House Dust. , 2011, , .		0
119	The Role Of Extracellular Matrix Protein Mindin In Airway Response To Environmental Airways Injury. , 2011, , .		0
120	Inter-Alpha-Trypsin Inhibitor Ameliorates Endothelial Injury In Sepsis., 2011,,.		0
121	Inter-Alpha-Trypsin Inhibitor Heavy Chain 4 (ITIH4) Inhibits Inflammatory Cell Migration But Promotes Activation In Lung Injury. , 2011, , .		O
122	Correction: Ambient Ozone Primes Pulmonary Innate Immunity in Mice. Journal of Immunology, 2016, 196, 2425-2425.	0.8	0
123	Microbiome Protects Against Pulmonary Fibrosis Through TLR5 Activation. , 2019, , .		O
124	TLR5 Protects Against Pulmonary Fibrosis. , 2020, , .		0
125	Environmental lung injury and pattern recognition receptors. , 2011, , 51-88.		0
126	TLR5 Participates in the TLR4 Receptor Complex and Biases Towards MyD88-Dependent Signaling in Environmental Lung Injury. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
127	Anonymous Record Linkage Between EPR and CDW-H: Toward Development of a Federated Genotype-Phenotype System. AMIA Summits on Translational Science Proceedings, 2013, 2013, 143-6.	0.4	0