Sharon L Walker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9097802/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fluid dynamic simulations at the interface of the blue-green sharpshooter functional foregut and grapevine xylem sap with implications for transmission of Xylella fastidiosa. PLoS ONE, 2022, 17, e0265762.	2.5	2
2	Functional foregut anatomy of the blue–green sharpshooter illustrated using a 3D model. Scientific Reports, 2021, 11, 6536.	3.3	4
3	Disrupting Irreversible Bacterial Adhesion and Biofilm Formation with an Engineered Enzyme. Applied and Environmental Microbiology, 2021, 87, e0026521.	3.1	6
4	Degradation of Brominated Organic Compounds (Flame Retardants) by a Four-Strain Consortium Isolated from Contaminated Groundwater. Applied Sciences (Switzerland), 2021, 11, 6263.	2.5	2
5	Aggregation morphology of planar engineered nanomaterials. Journal of Colloid and Interface Science, 2020, 561, 849-853.	9.4	7
6	Rethinking wastewater risks and monitoring in light of the COVID-19 pandemic. Nature Sustainability, 2020, 3, 981-990.	23.7	195
7	Concentrating ammonium in wastewater by forward osmosis using a surface modified nanofiltration membrane. Environmental Science: Water Research and Technology, 2019, 5, 246-255.	2.4	46
8	Impacts of antiscalants on the formation of calcium solids: implication on scaling potential of desalination concentrate. Environmental Science: Water Research and Technology, 2019, 5, 1285-1294.	2.4	21
9	Influence of nano-CuO and -TiO ₂ on deposition and detachment of <i>Escherichia coli</i> in two model systems. Environmental Science: Nano, 2019, 6, 3268-3279.	4.3	3
10	Escherichia coli O157:H7 and Salmonella Typhimurium adhesion to spinach leaf surfaces: Sensitivity to water chemistry and nutrient availability. Food Microbiology, 2019, 78, 134-142.	4.2	15
11	Impact of Physical and Chemical Cleaning Agents on Specific Biofilm Components and the Implications for Membrane Biofouling Management. Industrial & Engineering Chemistry Research, 2018, 57, 3359-3370.	3.7	24
12	Metabolism, survival, and gene expression of <i>Pseudomonas putida</i> to hematite nanoparticles mediated by surface-bound humic acid. Environmental Science: Nano, 2018, 5, 682-695.	4.3	26
13	Impact of soil clay minerals on growth, biofilm formation, and virulence gene expression of Escherichia coli O157:H7. Environmental Pollution, 2018, 243, 953-960.	7.5	41
14	Comparison of filtration mechanisms of food and industrial grade TiO2 nanoparticles. Analytical and Bioanalytical Chemistry, 2018, 410, 6133-6140.	3.7	7
15	Coupling hydrothermal liquefaction and membrane distillation to treat anaerobic digestate from food and dairy farm waste. Bioresource Technology, 2018, 267, 408-415.	9.6	43
16	Influence of Food and Industrial Grade Titanium Dioxide Nanoparticles on Microbial Diversity and Phenotypic Response in Model Septic System. Environmental Engineering Science, 2018, 35, 1049-1061.	1.6	1
17	Influence of septic system wastewater treatment on titanium dioxide nanoparticle subsurface transport mechanisms. Analytical and Bioanalytical Chemistry, 2018, 410, 6125-6132.	3.7	4
18	Sulfate Radical-Induced Disinfection of Pathogenic <i>Escherichia coli</i> O157:H7 via Iron-Activated Persulfate. Environmental Science and Technology Letters, 2017, 4, 154-160.	8.7	73

#	Article	IF	CITATIONS
19	Food and Industrial Grade Titanium Dioxide Impacts Gut Microbiota. Environmental Engineering Science, 2017, 34, 537-550.	1.6	41
20	Role of pH and ionic strength in the aggregation of TiO 2 nanoparticles in the presence of extracellular polymeric substances from Bacillus subtilis. Environmental Pollution, 2017, 228, 35-42.	7.5	66
21	Bacillus subtilis biofilm development in the presence of soil clay minerals and iron oxides. Npj Biofilms and Microbiomes, 2017, 3, 4.	6.4	83
22	Comparative environmental fate and toxicity of copper nanomaterials. NanoImpact, 2017, 7, 28-40.	4.5	277
23	Visualization of transport and fate of nano and micro-scale particles in porous media: modeling coupled effects of ionic strength and size. Environmental Science: Nano, 2017, 4, 1025-1036.	4.3	10
24	Survival of Escherichia coli O157:H7 in various soil particles: importance of the attached bacterial phenotype. Biology and Fertility of Soils, 2017, 53, 209-219.	4.3	17
25	Using the agricultural environment to select better surrogates for foodborne pathogens associated with fresh produce. International Journal of Food Microbiology, 2017, 262, 80-88.	4.7	8
26	Efficacy of post-harvest rinsing and bleach disinfection of E.Âcoli O157:H7 on spinach leaf surfaces. Food Microbiology, 2017, 62, 212-220.	4.2	15
27	Influence of extracellular polymeric substances on the aggregation kinetics of TiO2 nanoparticles. Water Research, 2016, 104, 381-388.	11.3	77
28	Polyaniline-Coated Carbon Nanotube Ultrafiltration Membranes: Enhanced Anodic Stability for <i>In Situ</i> Cleaning and Electro-Oxidation Processes. ACS Applied Materials & Interfaces, 2016, 8, 22574-22584.	8.0	136
29	Efficient Photocatalytic Disinfection of Escherichia coli O157:H7 using C70-TiO2 Hybrid under Visible Light Irradiation. Scientific Reports, 2016, 6, 25702.	3.3	45
30	Effects of copper particles on a model septic system's function and microbial community. Water Research, 2016, 91, 350-360.	11.3	15
31	Understanding the Transformation, Speciation, and Hazard Potential of Copper Particles in a Model Septic Tank System Using Zebrafish to Monitor the Effluent. ACS Nano, 2015, 9, 2038-2048.	14.6	54
32	Titanium Dioxide Nanoparticle Removal in Primary Prefiltration Stages of Water Treatment: Role of Coating, Natural Organic Matter, Source Water, and Solution Chemistry. Environmental Engineering Science, 2015, 32, 292-300.	1.6	29
33	Antimicrobial behavior of novel surfaces generated by electrophoretic deposition and breakdown anodization. Colloids and Surfaces B: Biointerfaces, 2015, 134, 204-212.	5.0	8
34	Impact of Growth Phase and Natural Organic Matter on the Attachment Kinetics of <i>Salmonella typhimurium</i> to Solid Surfaces. Environmental Engineering Science, 2015, 32, 111-120.	1.6	3
35	O Antigen Modulates Insect Vector Acquisition of the Bacterial Plant Pathogen Xylella fastidiosa. Applied and Environmental Microbiology, 2015, 81, 8145-8154.	3.1	23
36	Contrasting effects of extracellular polymeric substances on the surface characteristics of bacterial pathogens and cell attachment to soil particles. Chemical Geology, 2015, 410, 79-88.	3.3	21

#	Article	IF	CITATIONS
37	Metal Oxide Nanoparticles Induce Minimal Phenotypic Changes in a Model Colon Gut Microbiota. Environmental Engineering Science, 2015, 32, 602-612.	1.6	72
38	Microbial Attachment Inhibition through Low-Voltage Electrochemical Reactions on Electrically Conducting Membranes. Environmental Science & amp; Technology, 2015, 49, 12741-12750.	10.0	114
39	Fate and Transport of Molybdenum Disulfide Nanomaterials in Sand Columns. Environmental Engineering Science, 2015, 32, 163-173.	1.6	19
40	Biofouling of Reverse Osmosis Membranes: Positively Contributing Factors of <i>Sphingomonas</i> . Environmental Science & Technology, 2014, 48, 13941-13950.	10.0	46
41	Stability and Transport of Graphene Oxide Nanoparticles in Groundwater and Surface Water. Environmental Engineering Science, 2014, 31, 350-359.	1.6	120
42	Epithelial Microvilli Establish an Electrostatic Barrier to Microbial Adhesion. Infection and Immunity, 2014, 82, 2860-2871.	2.2	40
43	Deposition and disinfection of Escherichia coli O157:H7 on naturally occurring photoactive materials in a parallel plate chamber. Environmental Sciences: Processes and Impacts, 2014, 16, 194-202.	3.5	10
44	Removal of TiO ₂ Nanoparticles During Primary Water Treatment: Role of Coagulant Type, Dose, and Nanoparticle Concentration. Environmental Engineering Science, 2014, 31, 127-134.	1.6	56
45	Adhesion of bacterial pathogens to soil colloidal particles: Influences of cell type, natural organic matter, and solution chemistry. Water Research, 2014, 53, 35-46.	11.3	84
46	Aggregate morphology of nano-TiO ₂ : role of primary particle size, solution chemistry, and organic matter. Environmental Sciences: Processes and Impacts, 2013, 15, 275-282.	3.5	64
47	Study of bacterial adhesion onto immobilized TiO2: Effect on the photocatalytic activity for disinfection applications. Catalysis Today, 2013, 209, 140-146.	4.4	27
48	Effects of Solution Chemistry on the Transport of Graphene Oxide in Saturated Porous Media. Environmental Science & Technology, 2013, 47, 4255-4261.	10.0	144
49	Deposition and Survival of <i>Escherichia coli</i> O157:H7 on Clay Minerals in a Parallel Plate Flow System. Environmental Science & Technology, 2013, 47, 1896-1903.	10.0	97
50	Linking Microbial Community Structure to Function in Representative Simulated Systems. Applied and Environmental Microbiology, 2013, 79, 2552-2559.	3.1	16
51	Influence of Feedstock and Pyrolysis Temperature of Biochar Amendments on Transport of <i>Escherichia coli</i> in Saturated and Unsaturated Soil. Environmental Science & Technology, 2012, 46, 8097-8105.	10.0	104
52	Reactions between bacterial exopolymers and goethite: AÂcombined macroscopic and spectroscopic investigation. Water Research, 2012, 46, 5613-5620.	11.3	99
53	Impact of growth conditions on transport behavior of E. coli. Journal of Environmental Monitoring, 2012, 14, 984.	2.1	13
54	Fecal Indicator Bacteria Transport and Deposition in Saturated and Unsaturated Porous Media. Environmental Science & Technology, 2012, 46, 8782-8790.	10.0	74

#	Article	IF	CITATIONS
55	Lack of Influence of Extracellular Polymeric Substances (EPS) Level on Hydroxyl Radical Mediated Disinfection of <i>Escherichia coli</i> . Environmental Science & Technology, 2012, 46, 241-249.	10.0	44
56	Pseudomonas aeruginosa Attachment on QCM-D Sensors: The Role of Cell and Surface Hydrophobicities. Langmuir, 2012, 28, 6396-6402.	3.5	85
57	Effects of residual antibiotics in groundwater on Salmonella typhimurium: changes in antibiotic resistance, in vivo and in vitro pathogenicity. Journal of Environmental Monitoring, 2012, 14, 41-47.	2.1	14
58	Interactions of pathogens Escherichia coli and Streptococcus suis with clay minerals. Applied Clay Science, 2012, 69, 37-42.	5.2	46
59	Impact of Synthesis Methods on the Transport of Single Walled Carbon Nanotubes in the Aquatic Environment. Environmental Science & Technology, 2012, 46, 11752-11760.	10.0	47
60	Combined Factors Influencing the Aggregation and Deposition of nano-TiO ₂ in the Presence of Humic Acid and Bacteria. Environmental Science & Technology, 2012, 46, 6968-6976.	10.0	194
61	Deposition mechanisms of TiO2 nanoparticles in a parallel plate system. Journal of Colloid and Interface Science, 2012, 369, 16-22.	9.4	25
62	The role of alginate in <i>Pseudomonas aeruginosa</i> EPS adherence, viscoelastic properties and cell attachment. Biofouling, 2011, 27, 787-798.	2.2	93
63	Mechanisms of TiO2 nanoparticle transport in porous media: Role of solution chemistry, nanoparticle concentration, and flowrate. Journal of Colloid and Interface Science, 2011, 360, 548-555.	9.4	200
64	Container to characterization: Impacts of metal oxide handling, preparation, and solution chemistry on particle stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 368, 91-95.	4.7	42
65	Correlating Transport Behavior with Cell Properties for Eight Porcine <i>Escherichia coli</i> Isolates. Environmental Science & Technology, 2010, 44, 5008-5014.	10.0	51
66	Colloidal and Bacterial Deposition: Role of Gravity. Langmuir, 2010, 26, 314-319.	3.5	43
67	Initial Colloid Deposition on Bare and Zeolite-Coated Stainless Steel and Aluminum: Influence of Surface Roughness. Langmuir, 2010, 26, 12605-12613.	3.5	40
68	Macromolecule mediated transport and retention of Escherichia coli O157:H7 in saturated porous media. Water Research, 2010, 44, 1082-1093.	11.3	51
69	Reduced Bacterial Deposition and Attachment by Quorum-Sensing Inhibitor 4-Nitro-pyridine- <i>N</i> -oxide: The Role of Physicochemical Effects. Langmuir, 2010, 26, 12089-12094.	3.5	31
70	Extraction and Analysis of Extracellular Polymeric Substances: Comparison of Methods and Extracellular Polymeric Substance Levels in <i>Salmonella pullorum</i> SA 1685. Environmental Engineering Science, 2009, 26, 1523-1532.	1.6	57
71	The effect of packing hydrophilization on bacterial attachment and the relationship with the performance of biotrickling filters. Biotechnology and Bioengineering, 2009, 103, 1060-1067.	3.3	5
72	Electrochemical synthesis of FexNi1â^'x nanostructures for environmental remediation. Chemical Engineering Journal, 2009, 151, 66-72.	12.7	29

#	Article	IF	CITATIONS
73	Escherichia coli transport in porous media: Influence of cell strain, solution chemistry, and temperature. Colloids and Surfaces B: Biointerfaces, 2009, 71, 160-167.	5.0	80
74	Initial Bacterial Deposition on Bare and Zeolite-Coated Aluminum Alloy and Stainless Steel. Langmuir, 2009, 25, 1620-1626.	3.5	42
75	<i>Escherichia coli</i> O157:H7 Transport in Saturated Porous Media: Role of Solution Chemistry and Surface Macromolecules. Environmental Science & amp; Technology, 2009, 43, 4340-4347.	10.0	147
76	Coupled Factors Influencing Concentration-Dependent Colloid Transport and Retention in Saturated Porous Media. Environmental Science & amp; Technology, 2009, 43, 6996-7002.	10.0	140
77	Surface Characteristics and Adhesion Behavior of Escherichia coli O157:H7: Role of Extracellular Macromolecules. Biomacromolecules, 2009, 10, 2556-2564.	5.4	74
78	Transport of Iron-Based Nanoparticles: Role of Magnetic Properties. Environmental Science & Technology, 2009, 43, 8834-8839.	10.0	82
79	Reply to comment by William P. Johnson et al. on "Transport and fate of bacteria in porous media: Coupled effects of chemical conditions and pore space geometry― Water Resources Research, 2009, 45, .	4.2	8
80	The role of starvation on Escherichia coli adhesion and transport in saturated porous media. Water Research, 2008, 42, 1547-1554.	11.3	53
81	Transport and fate of bacteria in porous media: Coupled effects of chemical conditions and pore space geometry. Water Resources Research, 2008, 44, .	4.2	205
82	Colloidal Deposition on Remotely Controlled Charged Micropatterned Surfaces in a Parallel-Plate Flow Chamber. Langmuir, 2008, 24, 9381-9385.	3.5	18
83	Cell Preparation Methods Influence <i>Escherichia coli</i> D21g Surface Chemistry and Transport in Saturated Sand. Journal of Environmental Quality, 2008, 37, 2108-2115.	2.0	15
84	Coupling of physical and chemical mechanisms of colloid straining in saturated porous media. Water Research, 2007, 41, 3012-3024.	11.3	319
85	Resolving the Coupled Effects of Hydrodynamics and DLVO Forces on Colloid Attachment in Porous Media. Langmuir, 2007, 23, 9652-9660.	3.5	236
86	Role of Solution Chemistry and Ion Valence on the Adhesion Kinetics of Groundwater and Marine Bacteria. Langmuir, 2007, 23, 7162-7169.	3.5	84
87	Transport and straining ofE. coliO157:H7 in saturated porous media. Water Resources Research, 2006, 42, .	4.2	160
88	The role of nutrient presence on the adhesion kinetics of Burkholderia cepacia G4g and ENV435g. Colloids and Surfaces B: Biointerfaces, 2005, 45, 181-188.	5.0	35
89	Influence of Growth Phase on Adhesion Kinetics of Escherichia coli D21g. Applied and Environmental Microbiology, 2005, 71, 3093-3099.	3.1	168
90	Influence of Growth Phase on Bacterial Deposition:Â Interaction Mechanisms in Packed-Bed Column and Radial Stagnation Point Flow Systemsâ€. Environmental Science & Technology, 2005, 39, 6405-6411.	10.0	99

#	Article	IF	CITATIONS
91	Bacterial Adhesion and Transport in Porous Media:Â Role of the Secondary Energy Minimum. Environmental Science & Technology, 2004, 38, 1777-1785.	10.0	448
92	Role of Cell Surface Lipopolysaccharides inEscherichia coliK12 Adhesion and Transport. Langmuir, 2004, 20, 7736-7746.	3.5	288
93	A Novel Asymmetric Clamping Cell for Measuring Streaming Potential of Flat Surfaces. Langmuir, 2002, 18, 2193-2198.	3.5	167