Britt D Hall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9096815/publications.pdf

Version: 2024-02-01

28 papers 1,573 citations

430874 18 h-index 28 g-index

29 all docs 29 docs citations 29 times ranked 1694 citing authors

#	Article	IF	Citations
1	Importance of the Forest Canopy to Fluxes of Methyl Mercury and Total Mercury to Boreal Ecosystems. Environmental Science & Ecosystems. Environmental Science & Ecosystems. Environmental Science & Ecosystems.	10.0	258
2	Wetlands as principal zones of methylmercury production in southern Louisiana and the Gulf of Mexico region. Environmental Pollution, 2008, 154, 124-134.	7.5	172
3	Long-Term Wet and Dry Deposition of Total and Methyl Mercury in the Remote Boreal Ecoregion of Canada. Environmental Science & Echnology, 2008, 42, 8345-8351.	10.0	150
4	Microplastics in the gastrointestinal tracts of fish and the water from an urban prairie creek. Facets, 2017, 2, 395-409.	2.4	140
5	Mercury Cycling in Stream Ecosystems. 2. Benthic Methylmercury Production and Bed Sedimentâ 'Pore Water Partitioning. Environmental Science & Environm	10.0	130
6	Methylmercury and Total Mercury in Plant Litter Decomposing in Upland Forests and Flooded Landscapes. Environmental Science &	10.0	115
7	Recent advances in the study of mercury methylation in aquatic systems. Facets, 2017, 2, 85-119.	2.4	111
8	Peer Reviewed: Experimenting with Hydroelectric Reservoirs. Environmental Science & Emp; Technology, 2004, 38, 346A-352A.	10.0	53
9	Assessment of mercury bioaccumulation within the pelagic food web of lakes in the western Great Lakes region. Ecotoxicology, 2011, 20, 1520-1529.	2.4	49
10	Carbon Dioxide and Methane Production in Small Reservoirs Flooding Upland Boreal Forest. Ecosystems, 2005, 8, 267-285.	3.4	46
11	Mercury and methylmercury in aquatic sediment across western North America. Science of the Total Environment, 2016, 568, 727-738.	8.0	39
12	Experimental evidence for recovery of mercury-contaminated fish populations. Nature, 2022, 601, 74-78.	27.8	38
13	Environmental, geographic and trophic influences on methylmercury concentrations in macroinvertebrates from lakes and wetlands across Canada. Ecotoxicology, 2014, 23, 273-284.	2.4	34
14	Mercury methylation in high and low-sulphate impacted wetland ponds within the prairie pothole region of North America. Environmental Pollution, 2015, 205, 269-277.	7.5	31
15	Mercury Concentrations in Surface Water and Harvested Waterfowl from the Prairie Pothole Region of Saskatchewan. Environmental Science & Environmental	10.0	28
16	Concentrations of methylmercury in invertebrates from wetlands of the Prairie Pothole Region of North America. Environmental Pollution, 2012, 160, 153-160.	7.5	26
17	The stimulation of methylmercury production by decomposition of flooded birch leaves and jack pine needles. Biogeochemistry, 2004, 68, 107-129.	3.5	25
18	Uptake of methyl mercury by the floater mussel, <i>Pyganodon grandis</i> (bivalvia, unionidae), caged in a flooded wetland. Environmental Toxicology and Chemistry, 1996, 15, 928-936.	4. 3	24

#	Article	IF	CITATIONS
19	Changes in methyl mercury concentrations in zooplankton from four experimental reservoirs with differing amounts of carbon in the flooded catchmentsThis paper is part of the series "Forty Years of Aquatic Research at the Experimental Lakes Areaâ€. Canadian Journal of Fisheries and Aquatic Sciences, 2009, 66, 1910-1919.	1.4	18
20	Effects of inâ€channel beaver impoundments on mercury bioaccumulation in Rocky Mountain stream food webs. Ecosphere, 2015, 6, 1-17.	2.2	16
21	Multidecadal carbon sequestration in a headwater boreal lake. Limnology and Oceanography, 2019, 64, S150.	3.1	13
22	Spatial analysis of a hydrocarbon wasteâ€remediating landfarm demonstrates influence of management practices on bacterial and fungal community structure. Microbial Biotechnology, 2019, 12, 1199-1209.	4.2	11
23	Differential trends in mercury concentrations in double-crested cormorant populations of the Canadian Prairies. Ecotoxicology, 2014, 23, 419-428.	2.4	8
24	Survey of mercury in boreal chorus frog (<i>Pseudacris maculata</i>) and wood frog (<i>Rana) Tj ETQq0 0 0 rgBT 315-329.</i>	/Overlock 2.4	10 Tf 50 54 7
25	Trapped river otters (<i>Lontra canadensis</i>) from central Saskatchewan differ in total and organic mercury concentrations by sex and geographic location. Facets, 2018, 3, 139-154.	2.4	6
26	UPTAKE OF METHYL MERCURY BY THE FLOATER MUSSEL, PYGANODON GRANDIS (BIVALVIA, UNIONIDAE), CAGED IN A FLOODED WETLAND. Environmental Toxicology and Chemistry, 1996, 15, 928.	4.3	5
27	Mercury Elevator in Lakes: A Novel Vector of Methylmercury Transfer to Fish via Migratory Invertebrates. Environmental Science and Technology Letters, 2020, 7, 579-584.	8.7	3
28	Mercury exposure to red-winged blackbirds (Agelaius phoeniceus) and dragonfly (Odonata: Aeshnidae) nymphs in Prairie Pothole wetlands. Facets, 2018, 3, 174-191.	2.4	3