Marc GÃ¹/₄ell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9096480/publications.pdf

Version: 2024-02-01

46 papers

17,339 citations

33 h-index 233421 45 g-index

54 all docs

54 docs citations

54 times ranked 25832 citing authors

#	Article	IF	CITATIONS
1	RNA-Guided Human Genome Engineering via Cas9. Science, 2013, 339, 823-826.	12.6	8,009
2	CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology, 2013, 31, 833-838.	17.5	1,589
3	Correlation of mRNA and protein in complex biological samples. FEBS Letters, 2009, 583, 3966-3973.	2.8	1,519
4	Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nature Medicine, 2014, 20, 616-623.	30.7	733
5	Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science, 2017, 357, 1303-1307.	12.6	570
6	Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science, 2015, 350, 1101-1104.	12.6	511
7	Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science, 2015, 349, 982-986.	12.6	508
8	Proteome Organization in a Genome-Reduced Bacterium. Science, 2009, 326, 1235-1240.	12.6	440
9	Transcriptome Complexity in a Genome-Reduced Bacterium. Science, 2009, 326, 1268-1271.	12.6	394
10	Optimization of scarless human stem cell genome editing. Nucleic Acids Research, 2013, 41, 9049-9061.	14.5	358
11	Impact of Genome Reduction on Bacterial Metabolism and Its Regulation. Science, 2009, 326, 1263-1268.	12.6	267
12	Quantification of mRNA and protein and integration with protein turnover in a bacterium. Molecular Systems Biology, 2011, 7, 511.	7.2	267
13	Design, synthesis, and testing toward a 57-codon genome. Science, 2016, 353, 819-822.	12.6	251
14	The Genome Project-Write. Science, 2016, 353, 126-127.	12.6	194
15	Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers. Nucleic Acids Research, 2012, 40, e117-e117.	14.5	185
16	Genome editing assessment using CRISPR Genome Analyzer (CRISPR-GA). Bioinformatics, 2014, 30, 2968-2970.	4.1	136
17	Targeted and genome-wide sequencing reveal single nucleotide variations impacting specificity of Cas9 in human stem cells. Nature Communications, 2014, 5, 5507.	12.8	128
18	Bacterial transcriptomics: what is beyond the RNA horiz-ome?. Nature Reviews Microbiology, 2011, 9, 658-669.	28.6	121

#	Article	IF	CITATIONS
19	Extensive germline genome engineering in pigs. Nature Biomedical Engineering, 2021, 5, 134-143.	22.5	117
20	Efficient, footprint-free human iPSC genome editing by consolidation of Cas9/CRISPR and piggyBac technologies. Nature Protocols, 2017, 12, 88-103.	12.0	97
21	Strand-specific deep sequencing of the transcriptome. Genome Research, 2010, 20, 989-999.	5.5	76
22	Skin microbiome modulation induced by probiotic solutions. Microbiome, 2019, 7, 95.	11.1	74
23	Report of the Key Opinion Leaders Meeting on Stem Cell-derived Beta Cells. Transplantation, 2018, 102, 1223-1229.	1.0	72
24	CRISPR/Cas9â€Directed Genome Editing of Cultured Cells. Current Protocols in Molecular Biology, 2014, 107, 31.1.1-17.	2.9	67
25	Kidney transplantation from triple-knockout pigs expressing multiple human proteins in cynomolgus macaques. American Journal of Transplantation, 2022, 22, 46-57.	4.7	64
26	Engineering and optimising deaminase fusions for genome editing. Nature Communications, 2016, 7, 13330.	12.8	60
27	From Dysbiosis to Healthy Skin: Major Contributions of Cutibacterium acnes to Skin Homeostasis. Microorganisms, 2021, 9, 628.	3.6	57
28	Skin microbiome transplantation and manipulation: Current state of the art. Computational and Structural Biotechnology Journal, 2021, 19, 624-631.	4.1	52
29	Technological challenges and milestones for writing genomes. Science, 2019, 366, 310-312.	12.6	50
30	CRISPR-Cas-Mediated Targeted Genome Editing in Human Cells. Methods in Molecular Biology, 2014, 1114, 245-267.	0.9	48
31	Enabling large-scale genome editing at repetitive elements by reducing DNA nicking. Nucleic Acids Research, 2020, 48, 5183-5195.	14.5	41
32	Transcription start site associated RNAs in bacteria. Molecular Systems Biology, 2012, 8, 585.	7.2	40
33	CRISPR in Animals and Animal Models. Progress in Molecular Biology and Translational Science, 2017, 152, 95-114.	1.7	39
34	CRISPR-C: circularization of genes and chromosome by CRISPR in human cells. Nucleic Acids Research, 2018, 46, e131.	14.5	39
35	Heterologous erythromycin production across strain and plasmid construction. Biotechnology Progress, 2018, 34, 271-276.	2.6	26
36	<scp>PERV</scp> inactivation is necessary to guarantee absence of pigâ€toâ€patient <scp>PERV</scp> s transmission in xenotransplantation. Xenotransplantation, 2017, 24, e12366.	2.8	25

#	Article	IF	CITATIONS
37	Safety and Efficacy of Topically Applied Selected Cutibacterium acnes Strains over Five Weeks in Patients with Acne Vulgaris: An Open-label, Pilot Study. Acta Dermato-Venereologica, 2019, 99, 1253-1257.	1.3	24
38	Find and cut-and-transfer (FiCAT) mammalian genome engineering. Nature Communications, 2021, 12, 7071.	12.8	21
39	Porcine germline genome engineering. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	17
40	CRISPR-gRNA Design. Methods in Molecular Biology, 2019, 1961, 3-11.	0.9	11
41	DNA Damage Protection for Enhanced Bacterial Survival Under Simulated Low Earth Orbit Environmental Conditions in Escherichia coli. Frontiers in Microbiology, 2021, 12, 789668.	3.5	7
42	Genome-Wide PERV Inactivation in Pigs Using CRISPR/Cas9. Methods in Molecular Biology, 2020, 2110, 139-149.	0.9	4
43	Engineering selectivity of Cutibacterium acnes phages by epigenetic imprinting. PLoS Pathogens, 2022, 18, e1010420.	4.7	2
44	Establishing a Cell-Free Transcription–Translation Platform for <i>Cutibacterium acnes</i> to Prototype Engineered Metabolic and Synthetic Biology. ACS Biomaterials Science and Engineering, 2021, , .	5.2	2
45	Principles of Systems Biology, No. 9. Cell Systems, 2016, 3, 211-213.	6.2	1
46	Conjugative Assembly Genome Engineering (CAGE). Methods in Molecular Biology, 2020, 2075, 399-409.	0.9	1