Dominik Britz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9096212/publications.pdf

Version: 2024-02-01

933447 794594 21 640 10 19 citations h-index g-index papers 23 23 23 565 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Advanced Steel Microstructural Classification by Deep Learning Methods. Scientific Reports, 2018, 8, 2128.	3.3	298
2	Advanced microstructure classification by data mining methods. Computational Materials Science, 2018, 148, 324-335.	3.0	77
3	Objective microstructure classification by support vector machine (SVM) using a combination of morphological parameters and textural features for low carbon steels. Computational Materials Science, 2019, 160, 186-196.	3.0	69
4	A deep learning approach for complex microstructure inference. Nature Communications, 2021, 12, 6272.	12.8	34
5	A new analysis approach based on Haralick texture features for the characterization of microstructure on the example of low-alloy steels. Materials Characterization, 2018, 144, 584-596.	4.4	30
6	Classification of Bainitic Structures Using Textural Parameters and Machine Learning Techniques. Metals, 2020, 10, 630.	2.3	22
7	The Effect of Thermal Processing and Chemical Composition on Secondary Carbide Precipitation and Hardness in High-Chromium Cast Irons. International Journal of Metalcasting, 2020, 14, 755-765.	1.9	20
8	Secondary carbides in high chromium cast irons: An alternative approach to their morphological and spatial distribution characterization. Materials Characterization, 2018, 144, 621-630.	4.4	15
9	Tracing Microalloy Precipitation in Nb-Ti HSLA Steel during Austenite Conditioning. Metals, 2020, 10, 243.	2.3	13
10	Addressing materials' microstructure diversity using transfer learning. Npj Computational Materials, 2022, 8, .	8.7	13
11	Effect of indentation temperature on nickel-titanium indentation-induced two-way shape-memory surfaces. Materials Science & Damp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 675, 253-261.	5.6	9
12	Quantitative analysis of mixed niobium-titanium carbonitride solubility in HSLA steels based on atom probe tomography and electrical resistivity measurements. Journal of Materials Research and Technology, 2022, 18, 2048-2063.	5.8	7
13	Influence of porosity and impurities on the thermal conductivity of pressure-less sintered Cu powder green bodies. Powder Metallurgy, 2021, 64, 85-96.	1.7	6
14	Microstructural Classification of Bainitic Subclasses in Low-Carbon Multi-Phase Steels Using Machine Learning Techniques. Metals, 2021, 11, 1836.	2.3	6
15	Particle encapsulation techniques for atom probe tomography of precipitates in microalloyed steels. Ultramicroscopy, 2021, 223, 113219.	1.9	4
16	Opening the Door to Fundamental Understanding of Structure and Color Metallography - a Correlative Microscopy Study on Steel. Microscopy and Microanalysis, 2014, 20, 834-835.	0.4	3
17	Segmentation of Lath-Like Structures via Localized Identification of Directionality in a Complex-Phase Steel. Metallography, Microstructure, and Analysis, 2020, 9, 709-720.	1.0	3
18	Quantification of the Phase Transformation Kinetics in High Chromium Cast Irons Using Dilatometry and Metallographic Techniques. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 3789-3801.	2.2	3

#	Article	IF	CITATIONS
19	A New Approach for Color Metallography: Through Controlled Conditions to Objective Microstructure Analysis of Low-Carbon Steels by LePera-Etching. , 2019, , 130-151.		2
20	Investigation of Austenite Evolution in Low-Carbon Steel by Combining Thermo-Mechanical Simulation and EBSD Data. Materials Performance and Characterization, 2015, 4, 322-340.	0.3	1
21	Practical Metallography of Low Carbon Steels – New approaches in Preparation, Imaging and Analysis of Microstructures. Microscopy and Microanalysis, 2018, 24, 2226-2227.	0.4	0