
Lauchlan H Fraser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9095381/publications.pdf Version: 2024-02-01

LAUCHLAN H EDASED

#	Article	IF	CITATIONS
1	Debris Barriers Reduce the Effects of Livestock Grazing Along Streams After Timber Harvest. Rangeland Ecology and Management, 2022, 81, 1-8.	2.3	Ο
2	Global taxonomic and phylogenetic assembly of AM fungi. Mycorrhiza, 2022, 32, 135-144.	2.8	14
3	Global soil microbiomes: A new frontline of biomeâ€ecology research. Global Ecology and Biogeography, 2022, 31, 1120-1132.	5.8	19
4	Dominance, diversity, and niche breadth in arbuscular mycorrhizal fungal communities. Ecology, 2022, 103, e3761.	3.2	11
5	Spotted knapweed (Centaurea stoebe) creates a soil legacy effect by modulating soil elemental composition in a semi-arid grassland ecosystem. Journal of Environmental Management, 2022, 317, 115391.	7.8	3
6	Are arthropod communities in grassland ecosystems affected by the abundance of an invasive plant?. Oecologia, 2021, 196, 1-12.	2.0	5
7	Revegetation of degraded ecosystems into grasslands using biosolids as an organic amendment: A metaâ€analysis. Applied Vegetation Science, 2021, 24, .	1.9	10
8	Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytologist, 2021, 231, 763-776.	7.3	126
9	Soil nutrients and variation in biomass rather than native species richness influence introduced plant richness in a semi-arid grassland. Basic and Applied Ecology, 2021, 53, 62-73.	2.7	5
10	Phenotypic plasticity masks rangeâ€wide genetic differentiation for vegetative but not reproductive traits in a shortâ€lived plant. Ecology Letters, 2021, 24, 2378-2393.	6.4	21
11	Grassland reclamation of a copper mine tailings facility: Longâ€ŧerm effects of biosolids on plant community responses. Applied Vegetation Science, 2021, 24, e12612.	1.9	3
12	TRY—A plant trait database of databases. Global Change Biology, 2020, 26, 189-190.	9.5	38
13	Not a melting pot: Plant species aggregate in their nonâ€native range. Clobal Ecology and Biogeography, 2020, 29, 482-490.	5.8	16
14	Exploring trophic effects of spotted knapweed (Centaurea stoebe L.) on arthropod diversity using DNA metabarcoding. Food Webs, 2020, 24, e00157.	1.2	3
15	Priority effects: How the order of arrival of an invasive grass, <i>Bromus tectorum</i> , alters productivity and plant community structure when grown with native grass species. Ecology and Evolution, 2020, 10, 13173-13181.	1.9	8
16	Native Seedling Colonization on Stockpiled Mine Soils Is Constrained by Site Conditions and Competition with Exotic Species. Minerals (Basel, Switzerland), 2020, 10, 361.	2.0	4
17	Global evidence of positive biodiversity effects on spatial ecosystem stability in natural grasslands. Nature Communications, 2019, 10, 3207.	12.8	59
18	Production changes in response to climate change. , 2019, , 82-97.		0

18 Production changes in response to climate change. , 2019, , 82-97.

#	Article	IF	CITATIONS
19	Increased Soil Frost Versus Summer Drought as Drivers of Plant Biomass Responses to Reduced Precipitation: Results from a Globally Coordinated Field Experiment. Ecosystems, 2018, 21, 1432-1444.	3.4	18
20	Evaluation of the Use of Wetlands in Arsenic Sequestration of Mine-Influenced Effluent using Synchrotron XRF and XANES Spectroscopy. Microscopy and Microanalysis, 2018, 24, 516-517.	0.4	1
21	Short-term microbial effects of a large-scale mine-tailing storage facility collapse on the local natural environment. PLoS ONE, 2018, 13, e0196032.	2.5	12
22	Change in dominance determines herbivore effects on plant biodiversity. Nature Ecology and Evolution, 2018, 2, 1925-1932.	7.8	140
23	Long term carbon sequestration potential of biosolids-amended copper and molybdenum mine tailings following mine site reclamation. Ecological Engineering, 2018, 117, 38-49.	3.6	40
24	Livestock grazing in intermountain depressional wetlands: effects on breeding waterfowl. Wetlands Ecology and Management, 2017, 25, 471-484.	1.5	8
25	A comparison of geographic datasets and field measurements to model soil carbon using random forests and stepwise regressions (British Columbia, Canada). GIScience and Remote Sensing, 2017, 54, 573-591.	5.9	41
26	The database of the <scp>PREDICTS</scp> (Projecting Responses of Ecological Diversity In Changing) Tj ETQqO	0 0 rgBT /0 1.9	Dverlock 10 T
27	Pushing precipitation to the extremes in distributed experiments: recommendations for simulating wet and dry years. Global Change Biology, 2017, 23, 1774-1782.	9.5	132
28	Temperate grassland songbird species accumulate incrementally along a gradient of primary productivity. PLoS ONE, 2017, 12, e0186809.	2.5	6
29	Stimulating a Canadian narrative for climate. Facets, 2017, 2, 131-149.	2.4	3
30	Genomics to assist mine reclamation: a review. Restoration Ecology, 2016, 24, 165-173.	2.9	23
31	The influence of sampled biomass on species–area relationships of grassland plants. New Phytologist, 2016, 211, 382-385.	7.3	1
32	Predicting plant trait similarity along environmental gradients. Plant Ecology, 2016, 217, 1297-1306.	1.6	8
33	State of knowledge about energy development impacts on North American rangelands: An integrative approach. Journal of Environmental Management, 2016, 180, 1-9.	7.8	18
34	Roy Turkington and his legacy to the science of plant ecology. Plant Ecology, 2016, 217, 1291-1295.	1.6	0
35	Response to Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richness― Science, 2016, 351, 457-457.	12.6	5
36	Short-Term Effects of Changing Precipitation Patterns on Shrub-Steppe Grasslands: Seasonal Watering Is More Important than Frequency of Watering Events. PLoS ONE, 2016, 11, e0168663.	2.5	14

#	Article	IF	CITATIONS
37	A call for applying trophic structure in ecological restoration. Restoration Ecology, 2015, 23, 503-507.	2.9	81
38	Response to Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richness― Science, 2015, 350, 1177-1177.	12.6	9
39	A Survey-Based Assessment of Cattle Producers' Adaptation to Climate Change in British Columbia, Canada. Rangeland Ecology and Management, 2015, 68, 119-130.	2.3	9
40	Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science, 2015, 349, 302-305.	12.6	315
41	Forecasting climate change impacts on the distribution of wetland habitat in the Midwestern United states. Global Change Biology, 2015, 21, 766-776.	9.5	20
42	The <scp>PREDICTS</scp> database: a global database of how local terrestrial biodiversity responds to human impacts. Ecology and Evolution, 2014, 4, 4701-4735.	1.9	178
43	Germination of 14 freshwater wetland plants as affected by oxygen and light. Aquatic Botany, 2014, 114, 29-34.	1.6	7
44	Response of grassland biomass production to simulated climate change and clipping along an elevation gradient. Oecologia, 2014, 174, 1065-1073.	2.0	64
45	What drives plant species diversity? A global distributed test of the unimodal relationship between herbaceous species richness and plant biomass. Journal of Vegetation Science, 2014, 25, 1160-1166.	2.2	23
46	Effects of salinity and clipping on biomass and competition between a halophyte and a glycophyte. Plant Ecology, 2013, 214, 433-442.	1.6	6
47	Coordinated distributed experiments: an emerging tool for testing global hypotheses in ecology and environmental science. Frontiers in Ecology and the Environment, 2013, 11, 147-155.	4.0	237
48	Livestock grazing in intermountain depressional wetlands—Effects on plant strategies, soil characteristics and biomass. Agriculture, Ecosystems and Environment, 2013, 175, 21-28.	5.3	26
49	Climate change experiments in temperate grasslands: synthesis and future directions. Biology Letters, 2012, 8, 484-487.	2.3	38
50	Epigeal spider responses to fertilization and plant litter: testing biodiversity theory at the ground level. Journal of Arachnology, 2012, 40, 309-324.	0.5	7
51	Does Cattle Grazing Affect Ant Abundance and Diversity in Temperate Grasslands?. Rangeland Ecology and Management, 2012, 65, 292-298.	2.3	26
52	Plant community functional shifts in response to livestock grazing in intermountain depressional wetlands in British Columbia, Canada. Biological Conservation, 2011, 144, 511-517.	4.1	42
53	Is spotted knapweed (Centaurea stoebe L.) patch size related to the effect on soil and vegetation properties?. Plant Ecology, 2011, 212, 975-983.	1.6	6
54	Tracking Soil Temperature and Moisture in a Multi-Factor Climate Experiment in Temperate Grassland: Do Climate Manipulation Methods Produce their Intended Effects?. Ecosystems, 2011, 14, 489-502.	3.4	39

#	Article	IF	CITATIONS
55	The use of digital photos to assess visual cover for wildlife in rangelands. Journal of Environmental Management, 2010, 91, 1366-1370.	7.8	9
56	Using three pairs of competitive indices to test for changes in plant competition under different resource and disturbance levels. Journal of Vegetation Science, 2010, 21, 1025-1034.	2.2	22
57	Adaptive phenotypic plasticity of Pseudoroegneria spicata: response of stomatal density, leaf area and biomass to changes in water supply and increased temperature. Annals of Botany, 2009, 103, 769-775.	2.9	135
58	Wet and Wonderful: The World's Largest Wetlands Are Conservation Priorities. BioScience, 2009, 59, 39-51.	4.9	285
59	Effect of minor water depth treatments on competitive effect and response of eight wetland plants. Plant Ecology, 2008, 195, 33-43.	1.6	25
60	Large-scale manipulation of plant litter and fertilizer in a managed successional temperate grassland. Plant Ecology, 2008, 197, 183-195.	1.6	23
61	A new model of carbon and phosphorus transfers in arbuscular mycorrhizas. New Phytologist, 2008, 177, 466-479.	7.3	44
62	"Brown―World Invertebrates Contradict "Green―World Biodiversity Theory. Research Letters in Ecology, 2008, 2008, 1-4.	0.6	4
63	Plant community establishment in a restored wetland: Effects of soil removal. Applied Vegetation Science, 2007, 10, 383-390.	1.9	22
64	A test of three juvenile plant competitive response strategies. Journal of Vegetation Science, 2006, 17, 11-18.	2.2	11
65	A comparative assessment of seedling survival and biomass accumulation for fourteen wetland plant species grown under minor water-depth differences. Wetlands, 2005, 25, 520-530.	1.5	58
66	Can competitive ability predict structure in experimental plant communities?. Journal of Vegetation Science, 2005, 16, 571-578.	2.2	28
67	Effects of mycorrhizal inoculant, N:P supply ratio, and water depth on the growth and biomass allocation of three wetland plant species. Canadian Journal of Botany, 2005, 83, 1117-1125.	1.1	16
68	Can competitive ability predict structure in experimental plant communities?. Journal of Vegetation Science, 2005, 16, 571.	2.2	3
69	A test of four plant species to reduce total nitrogen and total phosphorus from soil leachate in subsurface wetland microcosms. Bioresource Technology, 2004, 94, 185-192.	9.6	166
70	Life-cycle economic model of small treatment wetlands for domestic wastewater disposal. Ecological Economics, 2003, 44, 359-369.	5.7	20
71	The Management of Wetlands for Biological Diversity: Four Principles. , 2003, , 21-42.		4
72	Four general principles for the management and conservation of wetlands in large lakes: The role of water levels, nutrients, competitive hierarchies and centrifugal organization. Lakes and Reservoirs: Research and Management, 2000, 5, 177-185.	0.9	62

#	Article	IF	CITATIONS
73	Effects of low and high nutrients on the competitive hierarchy of 26 shoreline plants. Journal of Ecology, 2000, 88, 413-423.	4.0	98
74	Aphid fitness on 13 grass species: a test of plant defence theory. Canadian Journal of Botany, 2000, 77, 1783-1789.	1.1	1
75	Interacting effects of herbivory and fertility on a synthesized plant community. Journal of Ecology, 1999, 87, 514-525.	4.0	122
76	Patterns of tree species richness in forested wetlands. Wetlands, 1999, 19, 639-647.	1.5	22
77	Experimental tests of trophic dynamics: towards a more penetrating approach. Oecologia, 1999, 119, 281-284.	2.0	9
78	On the diversity of land plants. Ecoscience, 1999, 6, 366-380.	1.4	6
79	A comparative approach to examine competitive response of 48 wetland plant species. Journal of Vegetation Science, 1998, 9, 777-786.	2.2	104
80	The role of experimental microcosms in ecological research. Trends in Ecology and Evolution, 1997, 12, 478-481.	8.7	109
81	The biology of Canadian weeds. 102. <i>Gaultheria shallon</i> Pursh Canadian Journal of Plant Science, 1993, 73, 1233-1247.	0.9	25