Xiaohu Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9094874/publications.pdf Version: 2024-02-01

87888 60623 6,626 100 38 81 citations h-index g-index papers 103 103 103 3614 docs citations times ranked citing authors all docs

Хилони Улыс

#	Article	IF	CITATIONS
1	Cross-correlation of Planck cosmic microwave background lensing with DESI galaxy groups. Monthly Notices of the Royal Astronomical Society, 2022, 511, 3548-3560.	4.4	8
2	The Color Gradients of the Globular Cluster Systems in M87 and M49. Astrophysical Journal, 2022, 926, 149.	4.5	1
3	Detection of pairwise kSZ effect with DESI galaxy clusters and Planck. Monthly Notices of the Royal Astronomical Society, 2022, 510, 5916-5928.	4.4	12
4	The Universal Specific Merger Rate of Dark Matter Halos. Astrophysical Journal, 2022, 929, 120.	4.5	5
5	First measurement of the characteristic depletion radius of dark matter haloes from weak lensing. Monthly Notices of the Royal Astronomical Society, 2022, 513, 4754-4769.	4.4	7
6	Massive star-forming galaxies have converted most of their halo gas into stars. Astronomy and Astrophysics, 2022, 663, A85.	5.1	13
7	<scp>The Three Hundred</scp> project: The <scp>gizmo-simba</scp> run. Monthly Notices of the Royal Astronomical Society, 2022, 514, 977-996.	4.4	31
8	What to expect from dynamical modelling of cluster haloes – II. Investigating dynamical state indicators with Random Forest. Monthly Notices of the Royal Astronomical Society, 2022, 514, 5890-5904.	4.4	6
9	Groups and Protocluster Candidates in the CLAUDS and HSC-SSP Joint Deep Surveys. Astrophysical Journal, 2022, 933, 9.	4.5	9
10	An Extended Halo-based Group/Cluster Finder: Application to the DESI Legacy Imaging Surveys DR8. Astrophysical Journal, 2021, 909, 143.	4.5	44
11	Emergent Gravity Fails to Explain Color-dependent Galaxy–Galaxy Lensing Signal from SDSS DR7. Astrophysical Journal, 2021, 914, 96.	4.5	3
12	Does concentration drive the scatter in the stellar-to-halo mass relation of galaxy clusters?. Monthly Notices of the Royal Astronomical Society, 2021, 505, 5117-5128.	4.4	20
13	What to expect from dynamical modelling of cluster haloes – I. The information content of different dynamical tracers. Monthly Notices of the Royal Astronomical Society, 2021, 505, 3907-3922.	4.4	9
14	The origin of galaxy colour bimodality in the scatter of the stellar-to-halo mass relation. Nature Astronomy, 2021, 5, 1069-1076.	10.1	33
15	The clustering of galaxies in the DESI imaging legacy surveys DR8: I. The luminosity and color dependent intrinsic clustering. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	5.1	6
16	An Empirical Determination of the Dependence of the Circumgalactic Mass Cooling Rate and Feedback Mass Loading Factor on Galactic Stellar Mass. Astrophysical Journal, 2021, 916, 101.	4.5	5
17	MAHGIC: a Model Adapter for the Halo–Galaxy Inter-Connection. Monthly Notices of the Royal Astronomical Society, 2021, 507, 2510-2530.	4.4	6
18	The Observed Cosmic Star Formation Rate Density Has an Evolution that Resembles a Γ(a, bt) Distribution and Can Be Described Successfully by Only Two Parameters. Astrophysical Journal, 2021, 919, 88.	4.5	10

Χιαόη Υάνς

#	Article	lF	CITATIONS
19	Connections between galaxy properties and halo formation time in the cosmic web. Monthly Notices of the Royal Astronomical Society, 2021, 507, 5320-5330.	4.4	6
20	The Breakdown Scale of H I Bias Linearity. Astrophysical Journal, 2021, 907, 4.	4.5	4
21	Detection of a Cross-correlation between Cosmic Microwave Background Lensing and Low-density Points. Astrophysical Journal, 2021, 923, 153.	4.5	7
22	Hα Emission and the Dependence of the Circumgalactic Cool Gas Fraction on Halo Mass. Astrophysical Journal, 2020, 888, 33.	4.5	2
23	The Three Hundred project: the stellar and gas profiles. Monthly Notices of the Royal Astronomical Society, 2020, 495, 2930-2948.	4.4	24
24	The specific star formation rate function at different mass scales and quenching: a comparison between cosmological models and SDSS. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2036-2048.	4.4	19
25	Galaxy–group (halo) alignments from SDSS DR7 and the ELUCID simulation. Monthly Notices of the Royal Astronomical Society, 2020, 500, 1895-1904.	4.4	5
26	Observing the Effects of Galaxy Interactions on the Circumgalactic Medium. Astrophysical Journal Letters, 2020, 893, L3.	8.3	4
27	UVÂand U-band luminosity functions from CLAUDS and HSC-SSP – I. Using four million galaxies to simultaneously constrain the very faint and bright regimes to z â^¼ 3. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1894-1918.	4.4	32
28	The Dearth of Differences between Central and Satellite Galaxies. III. Environmental Dependencies of Mass–Size and Mass–Structure Relations. Astrophysical Journal, 2020, 889, 37.	4.5	10
29	Measuring the integrated Sachs–Wolfe effect from the low-density regions of the universe. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3838-3853.	4.4	11
30	Detection of Missing Baryons in Galaxy Groups with Kinetic Sunyaev–Zel'dovich Effect. Astrophysical Journal, 2020, 889, 48.	4.5	33
31	Relating the Structure of Dark Matter Halos to Their Assembly and Environment. Astrophysical Journal, 2020, 899, 81.	4.5	22
32	The Next Generation Virgo Cluster Survey. XXXIV. Ultracompact Dwarf Galaxies in the Virgo Cluster. Astrophysical Journal, Supplement Series, 2020, 250, 17.	7.7	11
33	The Parameter-free Finger-of-God Model and Its Application to 21 cm Intensity Mapping. Astrophysical Journal, 2020, 895, 34.	4.5	2
34	A Large Massive Quiescent Galaxy Sample at zÂâ^¼Â1.2. Astrophysical Journal, 2020, 905, 103.	4.5	1
35	The Morphological Transformation and the Quenching of Galaxies. Astrophysical Journal, 2019, 878, 69.	4.5	20
36	New perspectives on the BOSS small-scale lensing discrepancy for the Planck \hat{P} CDM cosmology. Monthly Notices of the Royal Astronomical Society, 2019, 488, 5771-5787.	4.4	28

XIAOHU YANG

#	Article	IF	CITATIONS
37	Toward a Model-independent Measurement of the Halo Mass Function with Observables. Astrophysical Journal, 2019, 883, 155.	4.5	6
38	Accurate Modeling of the Projected Galaxy Clustering in Photometric Surveys. I. Tests with Mock Catalogs. Astrophysical Journal, 2019, 879, 71.	4.5	6
39	Evolution of Star-forming Galaxies from zÂ=Â0.7 to 1.2 with eBOSS Emission-line Galaxies. Astrophysical Journal, 2019, 871, 147.	4.5	32
40	Using the Modified Nearest Neighbor Method to Correct Fiber-collision Effects on Galaxy Clustering. Astrophysical Journal, 2019, 872, 26.	4.5	7
41	ELUCID. VI. Cosmic Variance of the Galaxy Distribution in the Local Universe. Astrophysical Journal, 2019, 872, 180.	4.5	20
42	Constraining Dark Energy with Stacked Concave Lenses. Astrophysical Journal, 2019, 874, 7.	4.5	10
43	Full-sky Ray-tracing Simulation of Weak Lensing Using ELUCID Simulations: Exploring Galaxy Intrinsic Alignment and Cosmic Shear Correlations. Astrophysical Journal, 2018, 853, 25.	4.5	17
44	Gas Contents of Galaxy Groups from Thermal Sunyaev–Zel'dovich Effects. Astrophysical Journal, 2018, 854, 181.	4.5	29
45	ELUCID. IV. Galaxy Quenching and its Relation to Halo Mass, Environment, and Assembly Bias. Astrophysical Journal, 2018, 852, 31.	4.5	52
46	The Dearth of Difference between Central and Satellite Galaxies. I. Perspectives on Star Formation Quenching and AGN Activities. Astrophysical Journal, 2018, 860, 102.	4.5	30
47	The Incomplete Conditional Stellar Mass Function: Unveiling the Stellar Mass Functions of Galaxies at 0.1 < Z < 0.8 from BOSS Observations. Astrophysical Journal, 2018, 858, 30.	4.5	31
48	The Dearth of Differences between Central and Satellite Galaxies. II. Comparison of Observations with L-GALAXIES and EAGLE in Star Formation Quenching. Astrophysical Journal, 2018, 864, 51.	4.5	13
49	Galaxy–Galaxy Weak-lensing Measurements from SDSS. II. Host Halo Properties of Galaxy Groups. Astrophysical Journal, 2018, 862, 4.	4.5	26
50	ELUCID. V. Lighting Dark Matter Halos with Galaxies. Astrophysical Journal, 2018, 860, 30.	4.5	17
51	Mapping the Real Space Distributions of Galaxies in SDSS DR7. II. Measuring the Growth Rate, Clustering Amplitude of Matter, and Biases of Galaxies at Redshift 0.1. Astrophysical Journal, 2018, 861, 137.	4.5	43
52	The Three Hundred project: a large catalogue of theoretically modelled galaxy clusters for cosmological and astrophysical applications. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2898-2915.	4.4	131
53	Exploring the thermal energy contents of the intergalactic mediumwith the Sunyaev–Zeldovich effect. Monthly Notices of the Royal Astronomical Society, 2018, 480, 4017-4024.	4.4	11
54	Galaxy–Galaxy Weak-lensing Measurements from SDSS. I. Image Processing and Lensing Signals. Astrophysical Journal, 2017, 836, 38.	4.5	13

XIAOHU YANG

#	Article	IF	CITATIONS
55	Revealing the Cosmic Web-dependent Halo Bias. Astrophysical Journal, 2017, 848, 60.	4.5	17
56	Galaxy groups in the low-redshift Universe. Monthly Notices of the Royal Astronomical Society, 2017, 470, 2982-3005.	4.4	84
57	MAPPING THE REAL-SPACE DISTRIBUTIONS OF GALAXIES IN SDSS DR7. I. TWO-POINT CORRELATION FUNCTIONS. Astrophysical Journal, 2016, 833, 241.	4.5	23
58	ELUCID—EXPLORING THE LOCAL UNIVERSE WITH RECONSTRUCTED INITIAL DENSITY FIELD. III. CONSTRAINED SIMULATION IN THE SDSS VOLUME. Astrophysical Journal, 2016, 831, 164.	4.5	101
59	Halo Mass Estimation for Galaxy Groups: The Role Of Magnitude Gaps. Proceedings of the International Astronomical Union, 2015, 11, 332-333.	0.0	0
60	Star formation and stellar mass assembly in dark matter haloes: from giants to dwarfs. Monthly Notices of the Royal Astronomical Society, 2015, 450, 1604-1617.	4.4	38
61	THE STELLAR-TO-HALO MASS RELATION OF LOCAL GALAXIES SEGREGATES BY COLOR. Astrophysical Journal, 2015, 799, 130.	4.5	100
62	First galaxy–galaxy lensing measurement of satellite halo mass in the CFHT Stripe-82 Survey. Monthly Notices of the Royal Astronomical Society, 2014, 438, 2864-2870.	4.4	34
63	An empirical model for the star formation history in dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2014, 439, 1294-1312.	4.4	61
64	ELUCID—EXPLORING THE LOCAL UNIVERSE WITH THE RECONSTRUCTED INITIAL DENSITY FIELD. I. HAMILTONIAN MARKOV CHAIN MONTE CARLO METHOD WITH PARTICLE MESH DYNAMICS. Astrophysical Journal, 2014, 794, 94.	4.5	121
65	BRIGHTEST SATELLITE GALAXY ALIGNMENT OF SLOAN DIGITAL SKY SURVEY GALAXY GROUPS. Astrophysical Journal, 2013, 768, 20.	4.5	22
66	Cosmological constraints from a combination of galaxy clustering and lensing – III. Application to SDSS data. Monthly Notices of the Royal Astronomical Society, 2013, 430, 767-786.	4.4	146
67	Cosmological constraints from a combination of galaxy clustering and lensing – I. Theoretical framework. Monthly Notices of the Royal Astronomical Society, 2013, 430, 725-746.	4.4	178
68	Detection of galaxy assembly bias. Monthly Notices of the Royal Astronomical Society, 2013, 433, 515-520.	4.4	63
69	RECONSTRUCTING THE INITIAL DENSITY FIELD OF THE LOCAL UNIVERSE: METHODS AND TESTS WITH MOCK CATALOGS. Astrophysical Journal, 2013, 772, 63.	4.5	62
70	CONSTRAINING THE STAR FORMATION HISTORIES IN DARK MATTER HALOS. I. CENTRAL GALAXIES. Astrophysical Journal, 2013, 770, 115.	4.5	46
71	Cosmological constraints from a combination of galaxy clustering and lensing – II. Fisher matrix analysis. Monthly Notices of the Royal Astronomical Society, 2013, 430, 747-766.	4.4	56
72	EVOLUTION OF THE GALAXY–DARK MATTER CONNECTION AND THE ASSEMBLY OF GALAXIES IN DARK MATTER HALOS. Astrophysical Journal, 2012, 752, 41.	4.5	257

XIAOHU YANG

#	Article	IF	CITATIONS
73	BULK FLOW OF HALOS IN $\hat{ m b}$ CDM SIMULATION. Astrophysical Journal, 2012, 761, 151.	4.5	22
74	Reconstructing the cosmic velocity and tidal fields with galaxy groups selected from the Sloan Digital Sky Survey. Monthly Notices of the Royal Astronomical Society, 2012, 420, 1809-1824.	4.4	71
75	AN ANALYTICAL MODEL FOR THE ACCRETION OF DARK MATTER SUBHALOS. Astrophysical Journal, 2011, 741, 13.	4.5	51
76	Satellite kinematics - III. Halo masses of central galaxies in SDSS. Monthly Notices of the Royal Astronomical Society, 2011, 410, 210-226.	4.4	238
77	Internal properties and environments of dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2011, 413, 1973-1990.	4.4	88
78	Low power integrated fluxgate sensor with a spiral magnetic core. Microsystem Technologies, 2011, 17, 1697-1702.	2.0	0
79	Reconstructing the cosmic density field with the distribution of dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2009, 394, 398-414.	4.4	67
80	GALAXY GROUPS IN THE SDSS DR4. III. THE LUMINOSITY AND STELLAR MASS FUNCTIONS. Astrophysical Journal, 2009, 695, 900-916.	4.5	251
81	The importance of satellite quenching for the build-up of the red sequence of present-day galaxies. Monthly Notices of the Royal Astronomical Society, 2008, 387, 79-91.	4.4	382
82	Galaxy Groups in the SDSS DR4. II. Halo Occupation Statistics. Astrophysical Journal, 2008, 676, 248-261.	4.5	253
83	Three Different Types of Galaxy Alignment within Dark Matter Halos. Astrophysical Journal, 2007, 662, L71-L74.	4.5	87
84	The Cross orrelation between Galaxies of Different Luminosities and Colors. Astrophysical Journal, 2007, 664, 608-632.	4.5	52
85	Galaxy Groups in the SDSS DR4. I. The Catalog and Basic Properties. Astrophysical Journal, 2007, 671, 153-170.	4.5	757
86	Towards a concordant model of halo occupation statistics. Monthly Notices of the Royal Astronomical Society, 2007, 376, 841-860.	4.4	237
87	The alignment between satellites and central galaxies: theory versus observations. Monthly Notices of the Royal Astronomical Society, 2007, 378, 1531-1542.	4.4	62
88	The alignment between the distribution of satellites and the orientation of their central galaxy. Monthly Notices of the Royal Astronomical Society, 2006, 369, 1293-1302.	4.4	141
89	Weak lensing by galaxies in groups and clusters – I. Theoretical expectations. Monthly Notices of the Royal Astronomical Society, 2006, 373, 1159-1172.	4.4	75
90	Cold gas in dark matter halos and the formation of late-type galaxies. Proceedings of the International Astronomical Union, 2005, 1, 205-212.	0.0	0

Χιαόμυ Υάνς

#	Article	IF	CITATIONS
91	A halo-based galaxy group finder: calibration and application to the 2dFGRS. Monthly Notices of the Royal Astronomical Society, 2005, 356, 1293-1307.	4.4	343
92	The two-point correlation of galaxy groups: probing the clustering of dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2005, 357, 608-618.	4.4	44
93	The cross-correlation between galaxies and groups: probing the galaxy distribution in and around dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2005, 362, 711-726.	4.4	86
94	Populating dark matter haloes with galaxies: comparing the 2dFGRS with mock galaxy redshift surveys. Monthly Notices of the Royal Astronomical Society, 2004, 350, 1153-1173.	4.4	98
95	The three-point correlation function of galaxies: comparing halo occupation models with observations. Monthly Notices of the Royal Astronomical Society, 2004, 353, 287-300.	4.4	59
96	Constraining galaxy formation and cosmology with the conditional luminosity function of galaxies. Monthly Notices of the Royal Astronomical Society, 2003, 339, 1057-1080.	4.4	515
97	Linking early- and late-type galaxies to their dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2003, 340, 771-792.	4.4	219
98	Measuring the Galaxy Power Spectrum with Multiresolution Decomposition. IV. Redshift Distortion. Astrophysical Journal, 2002, 566, 630-640.	4.5	7
99	The DWT power spectrum analysis of the large scale structure in the universe : Method and simulation tests. Science in China Series A: Mathematics, 2001, 44, 669-680.	0.5	0
100	The CFHT Large Area U-band Deep Survey (CLAUDS). Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	48