
William E Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/909441/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rescue of Pentamer-Null Strains of Human Cytomegalovirus in Epithelial Cells by Use of Histone Deacetylase Inhibitors Reveals an Additional Postentry Function for the Pentamer Complex. Journal of Virology, 2022, 96, e0003122.	3.4	1
2	Methods for Studying the Function of Cytomegalovirus GPCRs. Methods in Molecular Biology, 2021, 2244, 159-197.	0.9	3
3	AB569, a nontoxic chemical tandem that kills major human pathogenic bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4921-4930.	7.1	6
4	lsolation of Salivary Epithelial Cells from Human Salivary Glands for In Vitro Growth as Salispheres or Monolayers. Journal of Visualized Experiments, 2019, , .	0.3	4
5	The Human Cytomegalovirus Chemokine vCXCL-1 Modulates Normal Dissemination Kinetics of Murine Cytomegalovirus In Vivo. MBio, 2019, 10, .	4.1	9
6	Development of a Primary Human Cell Model for the Study of Human Cytomegalovirus Replication and Spread within Salivary Epithelium. Journal of Virology, 2019, 93, .	3.4	7
7	Human cytomegalovirus G protein-coupled receptor US28 promotes latency by attenuating c-fos. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1755-1764.	7.1	51
8	US28: HCMV's Swiss Army Knife. Viruses, 2018, 10, 445.	3.3	58
9	Epithelial Gpr116 regulates pulmonary alveolar homeostasis via Gq/11 signaling. JCI Insight, 2017, 2, .	5.0	47
10	Cytomegalovirus Restructures Lipid Rafts via a US28/CDC42-Mediated Pathway, Enhancing Cholesterol Efflux from Host Cells. Cell Reports, 2016, 16, 186-200.	6.4	39
11	The HCMV US28 vGPCR induces potent Gαq/PLC-β signaling in monocytes leading to increased adhesion to endothelial cells. Virology, 2016, 497, 233-243.	2.4	30
12	A little cooperation helps murine cytomegalovirus (MCMV) go a long way: MCMV co-infection rescues a chemokine salivary gland defect. Journal of General Virology, 2016, 97, 2957-2972.	2.9	4
13	The human cytomegalovirus lytic cycle is induced by 1,25-dihydroxyvitamin D3 in peripheral blood monocytes and in the THP-1 monocytic cell line. Virology, 2015, 483, 83-95.	2.4	9
14	The M33 G Protein-Coupled Receptor Encoded by Murine Cytomegalovirus Is Dispensable for Hematogenous Dissemination but Is Required for Growth within the Salivary Gland. Journal of Virology, 2014, 88, 11811-11824.	3.4	24
15	Methods for Studying the Function of Cytomegalovirus GPCRs. Methods in Molecular Biology, 2014, 1119, 133-164.	0.9	5
16	Arrestins as Regulators of Kinases and Phosphatases. Progress in Molecular Biology and Translational Science, 2013, 118, 115-147.	1.7	51
17	Pertussis Toxin B-Pentamer Mediates Intercellular Transfer of Membrane Proteins and Lipids. PLoS ONE, 2013, 8, e72885.	2.5	0
18	β-Arrestin Regulation of Myosin Light Chain Phosphorylation Promotes AT1aR-mediated Cell Contraction and Migration. PLoS ONE, 2013, 8, e80532.	2.5	23

WILLIAM E MILLER

#	Article	IF	CITATIONS
19	Mechanistic Insight into Pertussis Toxin and Lectin Signaling Using T Cells Engineered To Express a CD8α/CD3ζ Chimeric Receptor. Biochemistry, 2012, 51, 4126-4137.	2.5	10
20	US28 Is a Potent Activator of Phospholipase C during HCMV Infection of Clinically Relevant Target Cells. PLoS ONE, 2012, 7, e50524.	2.5	45
21	The Human Cytomegalovirus Encoded GPCR US28 Exhibits Constitutive Signaling in Productively Infected Glioblastoma Cells. FASEB Journal, 2010, 24, 769.2.	0.5	0
22	Activation of Intracellular Signaling Pathways by the Murine Cytomegalovirus G Protein-Coupled Receptor M33 Occurs via PLC-β/PKC-Dependent and -Independent Mechanisms. Journal of Virology, 2009, 83, 8141-8152.	3.4	23
23	The Carboxy-Terminal Tail of Human Cytomegalovirus (HCMV) US28 Regulates both Chemokine-Independent and Chemokine-Dependent Signaling in HCMV-Infected Cells. Journal of Virology, 2009, 83, 10016-10027.	3.4	33
24	Pertussis Toxin Signals through the TCR to Initiate Cross-Desensitization of the Chemokine Receptor CXCR4. Journal of Immunology, 2009, 182, 5730-5739.	0.8	38
25	Desensitization of herpesvirus-encoded G protein-coupled receptors. Life Sciences, 2008, 82, 125-134.	4.3	10
26	Functional analysis of human cytomegalovirus pUS28 mutants in infected cells. Journal of General Virology, 2008, 89, 97-105.	2.9	26
27	Pertussis Toxin Utilizes Proximal Components of the T-Cell Receptor Complex To Initiate Signal Transduction Events in T Cells. Infection and Immunity, 2007, 75, 4040-4049.	2.2	23
28	G Protein-coupled Receptor (GPCR) Kinase 2 Regulates Agonist-independent Gq/11 Signaling from the Mouse Cytomegalovirus GPCR M33. Journal of Biological Chemistry, 2006, 281, 39796-39805.	3.4	32
29	Â-Arrestin inhibits NF-ÂB activity by means of its interaction with the NF-ÂB inhibitor IÂBÂ. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8603-8607.	7.1	229
30	Signaling and regulation of G-protein coupled receptors encoded by cytomegaloviruses. Biochemistry and Cell Biology, 2004, 82, 636-642.	2.0	9
31	The Adaptor Protein β-Arrestin2 Enhances Endocytosis of the Low Density Lipoprotein Receptor. Journal of Biological Chemistry, 2003, 278, 44238-44245.	3.4	45
32	G-protein-coupled Receptor (GPCR) Kinase Phosphorylation and β-Arrestin Recruitment Regulate the Constitutive Signaling Activity of the Human Cytomegalovirus US28 GPCR. Journal of Biological Chemistry, 2003, 278, 21663-21671.	3.4	94
33	Desensitization, internalization, and signaling functions of Â-arrestins demonstrated by RNA interference. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1740-1744.	7.1	210
34	β-Arrestin/AP-2 Interaction in G Protein-coupled Receptor Internalization. Journal of Biological Chemistry, 2002, 277, 9247-9254.	3.4	126
35	Expanding roles for β-arrestins as scaffolds and adapters in GPCR signaling and trafficking. Current Opinion in Cell Biology, 2001, 13, 139-145.	5.4	312
36	Identification of a Motif in the Carboxyl Terminus of β-Arrestin2 Responsible for Activation of JNK3. Journal of Biological Chemistry, 2001, 276, 27770-27777.	3.4	130

WILLIAM E MILLER

#	Article	IF	CITATIONS
37	β-Arrestin-mediated Recruitment of the Src Family Kinase Yes Mediates Endothelin-1-stimulated Glucose Transport. Journal of Biological Chemistry, 2001, 276, 43663-43667.	3.4	115
38	β-Arrestin-mediated ADP-ribosylation Factor 6 Activation and β2-Adrenergic Receptor Endocytosis. Journal of Biological Chemistry, 2001, 276, 42509-42513.	3.4	204
39	β-Arrestin1 Interacts with the Catalytic Domain of the Tyrosine Kinase c-SRC. Journal of Biological Chemistry, 2000, 275, 11312-11319.	3.4	180
40	beta -Arrestin 2: A Receptor-Regulated MAPK Scaffold for the Activation of JNK3. , 2000, 290, 1574-1577.		752
41	Feedback Regulation of β-Arrestin1 Function by Extracellular Signal-regulated Kinases. Journal of Biological Chemistry, 1999, 274, 15971-15974.	3.4	123
42	The A20 Protein Interacts with the Epstein–Barr Virus Latent Membrane Protein 1 (LMP1) and Alters the LMP1/TRAF1/TRADD Complex. Virology, 1999, 264, 159-166.	2.4	46
43	The EGFR as a target for viral oncoproteins. Trends in Microbiology, 1999, 7, 453-458.	7.7	31
44	Matrix Metalloproteinase 9 Expression Is Induced by Epstein-Barr Virus Latent Membrane Protein 1 C-Terminal Activation Regions 1 and 2. Journal of Virology, 1999, 73, 5548-5555.	3.4	109
45	Herpes Simplex Virus Type 1 Induction of Persistent NF-κB Nuclear Translocation Increases the Efficiency of Virus Replication. Virology, 1998, 247, 212-222.	2.4	161
46	The NPC derived C15 LMP1 protein confers enhanced activation of NF-κB and induction of the EGFR in epithelial cells. Oncogene, 1998, 16, 1869-1877.	5.9	99
47	Interaction of Tumor Necrosis Factor Receptor-Associated Factor Signaling Proteins with the Latent Membrane Protein 1 PXQXT Motif Is Essential for Induction of Epidermal Growth Factor Receptor Expression. Molecular and Cellular Biology, 1998, 18, 2835-2844.	2.3	81