Marilyn Parsons

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9093634/publications.pdf

Version: 2024-02-01

99 papers 5,637 citations

94433 37 h-index 72 g-index

102 all docs

 $\begin{array}{c} 102 \\ \\ \text{docs citations} \end{array}$

102 times ranked 4200 citing authors

#	Article	IF	CITATIONS
1	Chromatin-Associated Protein Complexes Link DNA Base J and Transcription Termination in <i>Leishmania</i> . MSphere, 2021, 6, .	2.9	12
2	Unusual features and localization of the membrane kinome of Trypanosoma brucei. PLoS ONE, 2021, 16, e0258814.	2.5	1
3	The apicoplast and mitochondrion of Toxoplasma gondii. , 2020, , 499-545.		4
4	Pharmacokinetics and In Vivo Efficacy of Pyrazolopyrimidine, Pyrrolopyrimidine, and 5-Aminopyrazole-4-Carboxamide Bumped Kinase Inhibitors against Toxoplasmosis. Journal of Infectious Diseases, 2019, 219, 1464-1473.	4.0	13
5	Toxoplasma Calcium-Dependent Protein Kinase 1 Inhibitors: Probing Activity and Resistance Using Cellular Thermal Shift Assays. Antimicrobial Agents and Chemotherapy, $2018,62,.$	3.2	12
6	Two essential Thioredoxins mediate apicoplast biogenesis, protein import, and gene expression in Toxoplasma gondii. PLoS Pathogens, 2018, 14, e1006836.	4.7	40
7	Extended-spectrum antiprotozoal bumped kinase inhibitors: A review. Experimental Parasitology, 2017, 180, 71-83.	1.2	71
8	NADH dehydrogenase of Trypanosoma brucei is important for efficient acetate production in bloodstream forms. Molecular and Biochemical Parasitology, 2017, 211, 57-61.	1.1	15
9	A novel protein kinase is essential in bloodstream Trypanosoma brucei. International Journal for Parasitology, 2016, 46, 479-483.	3.1	5
10	Illuminating Parasite Protein Production by Ribosome Profiling. Trends in Parasitology, 2016, 32, 446-457.	3.3	14
11	Selective inhibition of Sarcocystis neurona calcium-dependent protein kinase 1 for equine protozoal myeloencephalitis therapy. International Journal for Parasitology, 2016, 46, 871-880.	3.1	22
12	Development of an Orally Available and Central Nervous System (CNS) Penetrant <i>Toxoplasma gondii</i> Calcium-Dependent Protein Kinase 1 (<i>Tg</i> CDPK1) Inhibitor with Minimal Human Ether-a-go-go-Related Gene (hERG) Activity for the Treatment of <i>Toxoplasmosis</i> Journal of Medicinal Chemistry, 2016, 59, 6531-6546.	6.4	81
13	Integrative analysis of the Trypanosoma brucei gene expression cascade predicts differential regulation of mRNA processing and unusual control of ribosomal protein expression. BMC Genomics, 2016, 17, 306.	2.8	50
14	Advancing Trypanosoma brucei genome annotation through ribosome profiling and spliced leader mapping. Molecular and Biochemical Parasitology, 2015, 202, 1-10.	1.1	20
15	SAR Studies of 5-Aminopyrazole-4-carboxamide Analogues as Potent and Selective Inhibitors of <i>Toxoplasma gondii</i> CDPK1. ACS Medicinal Chemistry Letters, 2015, 6, 1184-1189.	2.8	32
16	Vesicles Bearing Toxoplasma Apicoplast Membrane Proteins Persist Following Loss of the Relict Plastid or Golgi Body Disruption. PLoS ONE, 2014, 9, e112096.	2.5	19
17	Extensive stage-regulation of translation revealed by ribosome profiling of Trypanosoma brucei. BMC Genomics, 2014, 15, 911.	2.8	121
18	The Apicoplast and Mitochondrion ofÂToxoplasma gondii. , 2014, , 297-350.		5

#	Article	IF	Citations
19	Genetic Validation of Aminoacyl-tRNA Synthetases as Drug Targets in Trypanosoma brucei. Eukaryotic Cell, 2014, 13, 504-516.	3.4	26
20	Potent and Selective Inhibitors of CDPK1 from <i>T. gondii</i> and <i>C. parvum</i> Based on a 5-Aminopyrazole-4-carboxamide Scaffold. ACS Medicinal Chemistry Letters, 2014, 5, 40-44.	2.8	49
21	35 Years of Molecular and Biochemical Parasitology. Molecular and Biochemical Parasitology, 2014, 195, 75-76.	1.1	0
22	Enigmatic Presence of Mitochondrial Complex I in Trypanosoma brucei Bloodstream Forms. Eukaryotic Cell, 2012, 11, 183-193.	3.4	47
23	Benzoylbenzimidazole-based selective inhibitors targeting Cryptosporidium parvum and Toxoplasma gondii calcium-dependent protein kinase-1. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5264-5267.	2.2	43
24	Development of <i>Toxoplasma gondii</i> Calcium-Dependent Protein Kinase 1 (<i>Tg</i> CDPK1) Inhibitors with Potent Anti- <i>Toxoplasma</i> Activity. Journal of Medicinal Chemistry, 2012, 55, 2416-2426.	6.4	101
25	Apicoplast Targeting of a <i>Toxoplasma gondii</i> Transmembrane Protein Requires a Cytosolic Tyrosineâ€Based Motif. Traffic, 2012, 13, 694-704.	2.7	20
26	Identity crisis? The need for systematic gene IDs. Trends in Parasitology, 2011, 27, 183-184.	3.3	2
27	Trypanosoma brucei: Two mitogen activated protein kinase kinases are dispensable for growth and virulence of the bloodstream form. Experimental Parasitology, 2011, 128, 250-255.	1.2	11
28	3-Methyladenine blocks Toxoplasma gondii division prior to centrosome replication. Molecular and Biochemical Parasitology, 2010, 173, 142-153.	1.1	18
29	The Trypanosoma brucei Life Cycle Switch TbPTP1 Is Structurally Conserved and Dephosphorylates the Nucleolar Protein NOPP44/46. Journal of Biological Chemistry, 2010, 285, 22075-22081.	3.4	20
30	A Novel Protein Kinase Localized to Lipid Droplets Is Required for Droplet Biogenesis in Trypanosomes. Eukaryotic Cell, 2010, 9, 1702-1710.	3.4	31
31	Diverse Effects on Mitochondrial and Nuclear Functions Elicited by Drugs and Genetic Knockdowns in Bloodstream Stage Trypanosoma brucei. PLoS Neglected Tropical Diseases, 2010, 4, e678.	3.0	24
32	Toxoplasma gondii calcium-dependent protein kinase 1 is a target for selective kinase inhibitors. Nature Structural and Molecular Biology, 2010, 17, 602-607.	8.2	172
33	Sequential processing of the Toxoplasma apicoplast membrane protein FtsH1 in topologically distinct domains during intracellular trafficking. Molecular and Biochemical Parasitology, 2009, 166, 126-133.	1.1	30
34	Widespread variation in transcript abundance within and across developmental stages of Trypanosoma brucei. BMC Genomics, 2009, 10, 482.	2.8	126
35	Evolving Insights into Protein Trafficking to the Multiple Compartments of the Apicomplexan Plastid ¹ . Journal of Eukaryotic Microbiology, 2009, 56, 214-220.	1.7	12
36	Compartmentation prevents a lethal turbo-explosion of glycolysis in trypanosomes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17718-17723.	7.1	123

3

#	Article	IF	CITATIONS
37	A Thioredoxin Family Protein of the Apicoplast Periphery Identifies Abundant Candidate Transport Vesicles in <i>Toxoplasma gondii</i> . Eukaryotic Cell, 2008, 7, 1518-1529.	3.4	88
38	Protein Trafficking to the Apicoplast: Deciphering the Apicomplexan Solution to Secondary Endosymbiosis. Eukaryotic Cell, 2007, 6, 1081-1088.	3.4	36
39	Conservation of PEX19-Binding Motifs Required for Protein Targeting to Mammalian Peroxisomal and Trypanosome Glycosomal Membranes. Eukaryotic Cell, 2007, 6, 1439-1449.	3.4	24
40	Cell cycle-regulated vesicular trafficking of Toxoplasma APT1, a protein localized to multiple apicoplast membranes. Molecular Microbiology, 2007, 63, 1653-1668.	2.5	70
41	A Membrane Protease is Targeted to the Relict Plastid of <i>Toxoplasma </i> Via an Internal Signal Sequence. Traffic, 2007, 8, 1543-1553.	2.7	49
42	Characterization of glycosomal RING finger proteins of trypanosomatids. Experimental Parasitology, 2007, 116, 14-24.	1.2	7
43	Characterization of protein kinase CK2 from Trypanosoma brucei. Molecular and Biochemical Parasitology, 2007, 151, 28-40.	1.1	62
44	Protein kinases as drug targets in trypanosomes and Leishmania. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1754, 151-159.	2.3	196
45	Identification of trypanosomatid PEX19: Functional characterization reveals impact on cell growth and glycosome size and number. Molecular and Biochemical Parasitology, 2005, 142, 47-55.	1.1	36
46	Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi. BMC Genomics, 2005, 6, 127.	2.8	310
47	Probing the Role of Compartmentation of Glycolysis in Procyclic Form Trypanosoma brucei. Journal of Biological Chemistry, 2005, 280, 9030-9036.	3.4	45
48	Dissection of brefeldin A-sensitive and -insensitive steps in apicoplast protein targeting. Journal of Cell Science, 2005, 118, 565-574.	2.0	65
49	Species Specificity in Ribosome Biogenesis: a Nonconserved Phosphoprotein Is Required for Formation of the Large Ribosomal Subunit in Trypanosoma brucei. Eukaryotic Cell, 2005, 4, 30-35.	3.4	35
50	The Genome Sequence of <i>Trypanosoma cruzi</i> , Etiologic Agent of Chagas Disease. Science, 2005, 309, 409-415.	12.6	1,273
51	Glycosomes: parasites and the divergence of peroxisomal purpose. Molecular Microbiology, 2004, 53, 717-724.	2.5	83
52	The NOG1 CTP-binding Protein Is Required for Biogenesis of the 60 S Ribosomal Subunit. Journal of Biological Chemistry, 2003, 278, 32204-32211.	3.4	81
53	Glucose is toxic to glycosome-deficient trypanosomes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14177-14182.	7.1	114
54	Molecular cloning of Trypanosoma brucei CK2 catalytic subunits: the \hat{l}_{\pm} isoform is nucleolar and phosphorylates the nucleolar protein Nopp44/46. Molecular and Biochemical Parasitology, 2002, 119, 97-106.	1.1	22

#	Article	IF	Citations
55	Two families of RNA binding proteins from Trypanosoma brucei associate in a direct protein–protein interaction. Molecular and Biochemical Parasitology, 2002, 122, 81-89.	1.1	14
56	Biogenesis and function of peroxisomes and glycosomes. Molecular and Biochemical Parasitology, 2001, 115, 19-28.	1.1	109
57	Pathways Involved in Environmental Sensing in Trypanosomatids. Parasitology Today, 2000, 16, 56-62.	3.0	83
58	Isolation and characterization of Leishmania mutants defective in glycosomal protein import. Molecular and Biochemical Parasitology, 2000, 106, 225-237.	1.1	10
59	A dominant negative mutation in the GIM1 gene of Leishmania donovani is responsible for defects in glycosomal protein localization. Molecular and Biochemical Parasitology, 1999, 99, 117-128.	1.1	13
60	Trypanosoma brucei:Molecular Cloning and Stage-Regulated Expression of a Malate Dehydrogenase Localized to the Mitochondrion. Experimental Parasitology, 1998, 89, 63-70.	1.2	15
61	Genetic nomenclature for Trypanosoma and Leishmania. Molecular and Biochemical Parasitology, 1998, 97, 221-224.	1.1	83
62	Molecular cloning of the glycosomal malate dehyrogenase of Trypanosoma brucei1Note: Nucleotide sequences reported in this paper are available in the GenBank database under the accession number AF079110.1. Molecular and Biochemical Parasitology, 1998, 96, 185-189.	1.1	15
63	Changes in polysome profiles accompany trypanosome development. Molecular and Biochemical Parasitology, 1998, 97, 189-198.	1.1	57
64	Trypanosoma brucei:Identification of an Internal Region of Phosphoglycerate Kinase Required for Targeting to Glycosomal Microbodies. Experimental Parasitology, 1997, 85, 16-23.	1.2	25
65	A Major Tyrosine-phosphorylated Protein of Trypanosoma brucei Is a Nucleolar RNA-binding Protein. Journal of Biological Chemistry, 1996, 271, 15675-15681.	3.4	34
66	Protozoan Cell Organelles., 1995,, 233-255.		1
67	Developmental regulation of pp44/46, tyrosine-phosphorylated proteins associated with tyrosine/serine kinase activity in Trypanosoma brucei. Molecular and Biochemical Parasitology, 1994, 63, 69-78.	1.1	40
68	A Trypanosoma brucei gene family encoding protein kinases with catalytic domains structurally related to Nek1 and NIMA. Molecular and Biochemical Parasitology, 1993, 59, 111-121.	1.1	44
69	Characterization of a Trypanosoma brucei nuclear gene encoding a protein homologous to a subunit of bovine NADH:ubiquinone oxidoreductase (complex I). Molecular and Biochemical Parasitology, 1993, 58, 63-70.	1.1	26
70	Characterization of a divergent glycosomal microbody phosphoglycerate kinase from Trypanosoma brucei. Molecular and Biochemical Parasitology, 1993, 60, 265-272.	1.1	29
71	The C-terminal tripeptide of glycosomal phosphoglycerate kinase is both necessary and sufficient for import into the glycosomes of Trypanosoma brucei. FEBS Letters, 1993, 316, 53-58.	2.8	32
72	Trypanosoma brucei: Analysis of codon usage and nucleotide composition of nuclear genes. Experimental Parasitology, 1991, 73, 101-105.	1.2	21

#	Article	IF	Citations
73	Distinct patterns of tyrosine phosphorylation during the life cycle of Trypanosoma brucei. Molecular and Biochemical Parasitology, 1991, 45, 241-248.	1.1	67
74	A phosphoglycerate kinase-like molecule localized to glycosomal microbodies: evidence that the topogenic signal is not at the C-terminus. Molecular and Biochemical Parasitology, 1991, 46, 1-10.	1.1	33
75	Leishmania gp63 molecule implicated in cellular adhesion lacks an Arg-Gly-Asp sequence. Molecular and Biochemical Parasitology, 1990, 39, 267-274.	1.1	57
76	Active transport of 2-deoxy-d-glucose in Trypanosoma brucei procyclic forms. Molecular and Biochemical Parasitology, 1990, 42, 197-203.	1.1	37
77	An allele of Trypanosoma brucei cytoplasmic phosphoglycerate kinase is a mosaic of other alleles and genes. Molecular and Biochemical Parasitology, 1990, 42, 293-296.	1.1	11
78	Microbody phosphoglycerate kinase of Trypanosoma brucei: expression and complementation in Escherichia coli. Gene, 1990, 90, 215-220.	2.2	7
79	Trypanosoma brucei: Two-dimensional gel analysis of the major glycosomal proteins during the life cycle. Experimental Parasitology, 1990, 70, 276-285.	1.2	24
80	Trypanosome glycosomal protein P60 is homologous to phosphoenolpyruvate carboxykinase (ATP). Nucleic Acids Research, 1989, 17, 6411-6411.	14.5	27
81	Elevated phosphoglycerate kinase mRNA but not protein in monomorphic Trypanosoma brucei: implications for stage-regulation and post-transcriptional control. Molecular and Biochemical Parasitology, 1989, 33, 215-227.	1.1	34
82	The trypanosome spliced leader small RNA gene family: stage-specific modification of one of several similar dispersed genes. Nucleic Acids Research, 1986, 14, 1703-1717.	14.5	10
83	Expression of a minichromosomal variant surface glycoprotein gene in Trypanosoma brucei. Nature, 1985, 313, 595-597.	27.8	26
84	Antigenic variation in African trypanosomes: DNA rearrangements program immune evasion. Trends in Immunology, 1984, 5, 43-50.	7.5	48
85	Expression of a Trypanosoma brucei brucei variant antigen in Escherichia coli. Molecular and Biochemical Parasitology, 1984, 10, 207-216.	1.1	3
86	Sequences homologous to variant antigen mRNA spliced leader in Trypanosomatidae which do not undergo antigenic variation. Nature, 1984, 308, 665-667.	27.8	74
87	Trypanosome mRNAs share a common 5′ spliced leader sequence. Cell, 1984, 38, 309-316.	28.9	159
88	Molecular characterization of initial variants from the IsTat I serodeme of Trypanosoma brucei. Molecular and Biochemical Parasitology, 1983, 9, 241-254.	1,1	61
89	Genomic organization of Trypanosoma brucei variant antigen gene families in sequential parasitemias. Molecular and Biochemical Parasitology, 1983, 9, 255-269.	1.1	37
90	Genetic characterization of mouse immunoglobulin allotypic determinants (allotopes) defined by monoclonal antibodies. Immunogenetics, 1983, 18, 311-321.	2.4	38

#	Article	IF	CITATIONS
91	Structural characterization of mouse immunoglobulin allotypic determinants (allotopes) defined by monoclonal antibodies. Immunogenetics, 1983, 18, 323-334.	2.4	27
92	Genomic organization of variant surface glycoprotein genes in Trypanosoma brucei procyclic culture forms. Journal of Cellular Biochemistry, 1983, 23, 27-33.	2.6	2
93	Sequences homologous to the variant antigen mRNA spliced leader are located in tandem repeats and variable orphons in Trypanosoma brucei. Cell, 1983, 34, 901-909.	28.9	151
94	A monoclonal mouse antiallotype antibody reacts with certain human and other vertebrate immunoglobulins: Genetic and phylogenetic findings. Immunogenetics, 1981, 12, 207-219.	2.4	12
95	Igh-4d, a new allotype at the mouse IgG1 heavy chain locus. Immunogenetics, 1981, 14, 341-344.	2.4	9
96	Cystic fibrosis α2-macroglobulin protease interaction in vitro. Clinica Chimica Acta, 1980, 100, 215-224.	1.1	14
97	Binding of 125I-Labeled Proteinases to Plasma Proteins in Cystic Fibrosis. Pediatric Research, 1979, 13, 1030-1036.	2.3	7
98	Trypsin-binding IgG in cystic fibrosis. Nature, 1978, 274, 909-911.	27.8	17
99	Purine uptake by azaguanine-resistant chinese hamster cells. Journal of Cellular Physiology, 1976, 89, 209-217.	4.1	5