
Stephen Gottschalk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9092138/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human Epidermal Growth Factor Receptor 2 (HER2) –Specific Chimeric Antigen Receptor–Modified T Cells for the Immunotherapy of HER2-Positive Sarcoma. Journal of Clinical Oncology, 2015, 33, 1688-1696.	1.6	778
2	HER2-Specific Chimeric Antigen Receptor–Modified Virus-Specific T Cells for Progressive Glioblastoma. JAMA Oncology, 2017, 3, 1094.	7.1	608
3	Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape. Journal of Clinical Investigation, 2016, 126, 3036-3052.	8.2	515
4	Sustained Complete Responses in Patients With Lymphoma Receiving Autologous Cytotoxic T Lymphocytes Targeting Epstein-Barr Virus Latent Membrane Proteins. Journal of Clinical Oncology, 2014, 32, 798-808.	1.6	433
5	Design and development of therapies using chimeric antigen receptorâ€expressing T cells. Immunological Reviews, 2014, 257, 107-126.	6.0	418
6	Post-Transplant Lymphoproliferative Disorders. Annual Review of Medicine, 2005, 56, 29-44.	12.2	395
7	TanCAR: A Novel Bispecific Chimeric Antigen Receptor for Cancer Immunotherapy. Molecular Therapy - Nucleic Acids, 2013, 2, e105.	5.1	371
8	Off-the-Shelf Virus-Specific T Cells to Treat BK Virus, Human Herpesvirus 6, Cytomegalovirus, Epstein-Barr Virus, and Adenovirus Infections After Allogeneic Hematopoietic Stem-Cell Transplantation. Journal of Clinical Oncology, 2017, 35, 3547-3557.	1.6	367
9	HER2-Specific T Cells Target Primary Glioblastoma Stem Cells and Induce Regression of Autologous Experimental Tumors. Clinical Cancer Research, 2010, 16, 474-485.	7.0	324
10	Combinational Targeting Offsets Antigen Escape and Enhances Effector Functions of Adoptively Transferred T Cells in Glioblastoma. Molecular Therapy, 2013, 21, 2087-2101.	8.2	300
11	Complete responses of relapsed lymphoma following genetic modification of tumor-antigen presenting cells and T-lymphocyte transfer. Blood, 2007, 110, 2838-2845.	1.4	266
12	Antitumor Effects of Chimeric Receptor Engineered Human T Cells Directed to Tumor Stroma. Molecular Therapy, 2013, 21, 1611-1620.	8.2	266
13	An Epstein-Barr virus deletion mutant associated with fatal lymphoproliferative disease unresponsive to therapy with virus-specific CTLs. Blood, 2001, 97, 835-843.	1.4	249
14	Treatment of solid organ transplant recipients with autologous Epstein Barr virus–specific cytotoxic T lymphocytes (CTLs). Blood, 2006, 108, 2942-2949.	1.4	241
15	Characterization and treatment of chronic active Epstein-Barr virus disease: a 28-year experience in the United States. Blood, 2011, 117, 5835-5849.	1.4	241
16	Rapidly Generated Multivirus-specific Cytotoxic T Lymphocytes for the Prophylaxis and Treatment of Viral Infections. Molecular Therapy, 2012, 20, 1622-1632.	8.2	238
17	Transgenic Expression of IL15 Improves Antiglioma Activity of IL13Rα2-CAR T Cells but Results in Antigen Loss Variants. Cancer Immunology Research, 2017, 5, 571-581.	3.4	232
18	Constitutive Signaling from an Engineered IL7 Receptor Promotes Durable Tumor Elimination by Tumor-Redirected T Cells. Cancer Discovery, 2017, 7, 1238-1247.	9.4	204

#	Article	IF	CITATIONS
19	Lentiviral Gene Therapy Combined with Low-Dose Busulfan in Infants with SCID-X1. New England Journal of Medicine, 2019, 380, 1525-1534.	27.0	203
20	Adoptive Transfer of EBV-specific T Cells Results in Sustained Clinical Responses in Patients With Locoregional Nasopharyngeal Carcinoma. Journal of Immunotherapy, 2010, 33, 983-990.	2.4	201
21	T Cells Redirected to EphA2 for the Immunotherapy of Glioblastoma. Molecular Therapy, 2013, 21, 629-637.	8.2	200
22	Safety and clinical efficacy of rapidly-generated trivirus-directed T cells as treatment for adenovirus, EBV, and CMV infections after allogeneic hematopoietic stem cell transplant. Molecular Therapy, 2013, 21, 2113-2121.	8.2	200
23	CAR T Cell Therapy for Solid Tumors: Bright Future or Dark Reality?. Molecular Therapy, 2020, 28, 2320-2339.	8.2	194
24	Adoptive T-cell Transfer and Chemotherapy in the First-line Treatment of Metastatic and/or Locally Recurrent Nasopharyngeal Carcinoma. Molecular Therapy, 2014, 22, 132-139.	8.2	185
25	Generating CTLs against the subdominant Epstein-Barr virus LMP1 antigen for the adoptive immunotherapy of EBV-associated malignancies. Blood, 2003, 101, 1905-1912.	1.4	182
26	NK Cells Expressing a Chimeric Activating Receptor Eliminate MDSCs and Rescue Impaired CAR-T Cell Activity against Solid Tumors. Cancer Immunology Research, 2019, 7, 363-375.	3.4	180
27	Immunotherapy for Osteosarcoma: Genetic Modification of T cells Overcomes Low Levels of Tumor Antigen Expression. Molecular Therapy, 2009, 17, 1779-1787.	8.2	171
28	CAR T Cells for Solid Tumors. Cancer Journal (Sudbury, Mass), 2014, 20, 151-155.	2.0	170
29	Armed Oncolytic Adenovirus–Expressing PD-L1 Mini-Body Enhances Antitumor Effects of Chimeric Antigen Receptor T Cells in Solid Tumors. Cancer Research, 2017, 77, 2040-2051.	0.9	170
30	Regression of Experimental Medulloblastoma following Transfer of HER2-Specific T Cells. Cancer Research, 2007, 67, 5957-5964.	0.9	153
31	Adenovirotherapy Delivering Cytokine and Checkpoint Inhibitor Augments CAR T Cells against Metastatic Head and Neck Cancer. Molecular Therapy, 2017, 25, 2440-2451.	8.2	151
32	T cells redirected against CD70 for the immunotherapy of CD70-positive malignancies. Blood, 2011, 117, 4304-4314.	1.4	140
33	T-cell Engager-armed Oncolytic Vaccinia Virus Significantly Enhances Antitumor Therapy. Molecular Therapy, 2014, 22, 102-111.	8.2	140
34	Tumor-Specific T-Cells Engineered to Overcome Tumor Immune Evasion Induce Clinical Responses in Patients With Relapsed Hodgkin Lymphoma. Journal of Clinical Oncology, 2018, 36, 1128-1139.	1.6	137
35	Redirecting T cells to hematological malignancies with bispecific antibodies. Blood, 2018, 131, 30-38.	1.4	134
36	Inducible Activation of MyD88 and CD40 in CAR T Cells Results in Controllable and Potent Antitumor Activity in Preclinical Solid Tumor Models. Cancer Discovery, 2017, 7, 1306-1319.	9.4	125

#	Article	IF	CITATIONS
37	<i>piggyBac</i> Transposon/Transposase System to Generate CD19-Specific T Cells for the Treatment of B-Lineage Malignancies. Human Gene Therapy, 2010, 21, 427-437.	2.7	124
38	Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity. Science Translational Medicine, 2021, 13, eabh0272.	12.4	123
39	PiggyBac-mediated Cancer Immunotherapy Using EBV-specific Cytotoxic T-cells Expressing HER2-specific Chimeric Antigen Receptor. Molecular Therapy, 2011, 19, 2133-2143.	8.2	110
40	A phase II study evaluating the safety and efficacy of an adenovirus-ΔLMP1-LMP2 transduced dendritic cell vaccine in patients with advanced metastatic nasopharyngeal carcinoma. Annals of Oncology, 2012, 23, 997-1005.	1.2	110
41	Treatment of Acute Myeloid Leukemia with T Cells Expressing Chimeric Antigen Receptors Directed to C-type Lectin-like Molecule 1. Molecular Therapy, 2017, 25, 2202-2213.	8.2	109
42	Enhancing the in vivo expansion of adoptively transferred EBV-specific CTL with lymphodepleting CD45 monoclonal antibodies in NPC patients. Blood, 2009, 113, 2442-2450.	1.4	107
43	Adoptive Immunotherapy for EBV-associated Malignancies. Leukemia and Lymphoma, 2005, 46, 1-10.	1.3	104
44	Tumor response and endogenous immune reactivity after administration of HER2 CAR T cells in a child with metastatic rhabdomyosarcoma. Nature Communications, 2020, 11, 3549.	12.8	103
45	CD70-specific CAR T cells have potent activity against acute myeloid leukemia without HSC toxicity. Blood, 2021, 138, 318-330.	1.4	98
46	The Generation and Characterization of LMP2-Specific CTLs for Use as Adoptive Transfer From Patients With Relapsed EBV-Positive Hodgkin Disease. Journal of Immunotherapy, 2004, 27, 317-327.	2.4	96
47	Comparable Outcomes of Matched-Related and Alternative Donor Stem Cell Transplantation for Pediatric Severe Aplastic Anemia. Biology of Blood and Marrow Transplantation, 2006, 12, 1277-1284.	2.0	96
48	Oncolytic Adenovirus Armed with BiTE, Cytokine, and Checkpoint Inhibitor Enables CAR T Cells to Control the Growth of Heterogeneous Tumors. Molecular Therapy, 2020, 28, 1251-1262.	8.2	89
49	Cancer-associated fibroblasts as targets for immunotherapy. Immunotherapy, 2012, 4, 1129-1138.	2.0	88
50	Immunotherapy targeting HER2 with genetically modified T cells eliminates tumor-initiating cells in osteosarcoma. Cancer Gene Therapy, 2012, 19, 212-217.	4.6	87
51	Optimizing EphA2-CAR T Cells for the Adoptive Immunotherapy of Glioma. Molecular Therapy - Methods and Clinical Development, 2018, 9, 70-80.	4.1	87
52	The Narrow-Spectrum HDAC Inhibitor Entinostat Enhances NKG2D Expression Without NK Cell Toxicity, Leading to Enhanced Recognition of Cancer Cells. Pharmaceutical Research, 2015, 32, 779-792.	3.5	86
53	Adenoviral gene transfer into dendritic cells efficiently amplifies the immune response to LMP2A antigen: A potential treatment strategy for Epstein-Barr virus-positive Hodgkin's lymphoma. International Journal of Cancer, 2001, 93, 706-713.	5.1	80
54	Cytotoxic T Lymphocytes Simultaneously Targeting Multiple Tumor-associated Antigens to Treat EBV Negative Lymphoma. Molecular Therapy, 2011, 19, 2258-2268.	8.2	80

#	Article	IF	CITATIONS
55	Engager T Cells: A New Class of Antigen-specific T Cells That Redirect Bystander T Cells. Molecular Therapy, 2015, 23, 171-178.	8.2	78
56	Immunotherapeutic strategies to prevent and treat human herpesvirus 6 reactivation after allogeneic stem cell transplantation. Blood, 2013, 121, 207-218.	1.4	76
57	Adverse events following infusion of T cells for adoptive immunotherapy: a 10-year experience. Cytotherapy, 2010, 12, 743-749.	0.7	75
58	Characterization and Functional Analysis of scFv-based Chimeric Antigen Receptors to Redirect T Cells to IL13Rα2-positive Glioma. Molecular Therapy, 2016, 24, 354-363.	8.2	72
59	Redirecting T Cells to Glypican-3 with 4-1BB Zeta Chimeric Antigen Receptors Results in Th1 Polarization and Potent Antitumor Activity. Human Gene Therapy, 2017, 28, 437-448.	2.7	72
60	CD123-Engager T Cells as a Novel Immunotherapeutic for Acute Myeloid Leukemia. Molecular Therapy, 2016, 24, 1615-1626.	8.2	70
61	T cells redirected to interleukin-13Rα2 with interleukin-13 mutein–chimeric antigen receptors have anti-glioma activity but alsoÂrecognize interleukin-13Rα1. Cytotherapy, 2014, 16, 1121-1131.	0.7	68
62	Allogeneic CAR Cell Therapy—More Than a Pipe Dream. Frontiers in Immunology, 2020, 11, 618427.	4.8	64
63	Cell-surface antigen profiling of pediatric brain tumors: B7-H3 is consistently expressed and can be targeted via local or systemic CAR T-cell delivery. Neuro-Oncology, 2021, 23, 999-1011.	1.2	63
64	HBsAg-redirected T cells exhibit antiviral activity in HBV-infected human liver chimeric mice. Cytotherapy, 2018, 20, 697-705.	0.7	62
65	Hemophagocytic lymphohistiocytosisâ€like toxicity (carHLH) after CD19â€specific CAR Tâ€cell therapy. British Journal of Haematology, 2021, 194, 701-707.	2.5	61
66	Large-Scale Expansion of Dendritic Cell-Primed Polyclonal Human Cytotoxic T-Lymphocyte Lines Using Lymphoblastoid Cell Lines for Adoptive Immunotherapy. Journal of Immunotherapy, 2003, 26, 241-256.	2.4	59
67	Generation of Polyclonal CMV-specific T Cells for the Adoptive Immunotherapy of Glioblastoma. Journal of Immunotherapy, 2012, 35, 159-168.	2.4	59
68	Engineered Cytokine Signaling to Improve CAR T Cell Effector Function. Frontiers in Immunology, 2021, 12, 684642.	4.8	57
69	Toward Immunotherapy With Redirected T Cells in a Large Animal Model. Journal of Immunotherapy, 2014, 37, 407-415.	2.4	56
70	Adoptive Transfer of IL13Rα2-Specific Chimeric Antigen Receptor T Cells Creates a Pro-inflammatory Environment in Glioblastoma. Molecular Therapy, 2018, 26, 986-995.	8.2	55
71	Treatment of Epstein-Barr virus-associated malignancies with specific T cells. Advances in Cancer Research, 2002, 84, 175-201.	5.0	53
72	T cells expressing CD19-specific Engager Molecules for the Immunotherapy of CD19-positive Malignancies. Scientific Reports, 2016, 6, 27130.	3.3	52

#	Article	IF	CITATIONS
73	Molecular transfer of CD40 and OX40 ligands to leukemic human B cells induces expansion of autologous tumor–reactive cytotoxic T lymphocytes. Blood, 2005, 105, 2436-2442.	1.4	51
74	Expansion of T cells targeting multiple antigens of cytomegalovirus, Epstein–Barr virus and adenovirus to provide broad antiviral specificity after stem cell transplantation. Cytotherapy, 2011, 13, 976-986.	0.7	50
75	EBV/LMP-specific T cells maintain remissions of T- and B-cell EBV lymphomas after allogeneic bone marrow transplantation. Blood, 2018, 132, 2351-2361.	1.4	49
76	Is cancer gene therapy an empty suit?. Lancet Oncology, The, 2013, 14, e447-e456.	10.7	48
77	Adoptive T-Cell Immunotherapy. Current Topics in Microbiology and Immunology, 2015, 391, 427-454.	1.1	48
78	A Bump in the Road: How the Hostile AML Microenvironment Affects CAR T Cell Therapy. Frontiers in Oncology, 2020, 10, 262.	2.8	48
79	CD19-CAR TÂcells undergo exhaustion DNA methylation programming in patients with acute lymphoblastic leukemia. Cell Reports, 2021, 37, 110079.	6.4	48
80	Comparable Outcome of Alternative Donor and Matched Sibling Donor Hematopoietic Stem Cell Transplant for Children with Acute Lymphoblastic Leukemia in First or Second Remission Using Alemtuzumab in a Myeloablative Conditioning Regimen. Biology of Blood and Marrow Transplantation, 2008, 14, 1245-1252.	2.0	45
81	"Mini―bank of only 8 donors supplies CMV-directed T cells to diverse recipients. Blood Advances, 2019, 3, 2571-2580.	5.2	44
82	Genetic Modification Strategies to Enhance CAR T Cell Persistence for Patients With Solid Tumors. Frontiers in Immunology, 2019, 10, 218.	4.8	43
83	A Vaccine That Co-Targets Tumor Cells and Cancer Associated Fibroblasts Results in Enhanced Antitumor Activity by Inducing Antigen Spreading. PLoS ONE, 2013, 8, e82658.	2.5	43
84	Changing the Mindset in Life Sciences Toward Translation: A Consensus. Science Translational Medicine, 2014, 6, 264cm12.	12.4	42
85	Complementation of Antigen-presenting Cells to Generate T Lymphocytes With Broad Target Specificity. Journal of Immunotherapy, 2014, 37, 193-203.	2.4	42
86	Rewriting History: Epigenetic Reprogramming of CD8+ T Cell Differentiation to Enhance Immunotherapy. Trends in Immunology, 2020, 41, 665-675.	6.8	42
87	CAR T cells redirected to cell surface GRP78 display robust anti-acute myeloid leukemia activity and do not target hematopoietic progenitor cells. Nature Communications, 2022, 13, 587.	12.8	41
88	The Costs and Cost-Effectiveness of Allogeneic Peripheral Blood Stem Cell Transplantation versus Bone Marrow Transplantation in Pediatric Patients with Acute Leukemia. Biology of Blood and Marrow Transplantation, 2010, 16, 1272-1281.	2.0	39
89	Peripheral T cell cytotoxicity predicts T cell function in the tumor microenvironment. Scientific Reports, 2019, 9, 2636.	3.3	38
90	Clinical effects of administering leukemia-specific donor T cells to patients with AML/MDS after allogeneic transplant. Blood, 2021, 137, 2585-2597.	1.4	38

#	Article	IF	CITATIONS
91	Route of 41BB/41BBL Costimulation Determines Effector Function of B7-H3-CAR.CD28ζ T Cells. Molecular Therapy - Oncolytics, 2020, 18, 202-214.	4.4	37
92	Antibody with Infinite Affinity for In Vivo Tracking of Genetically Engineered Lymphocytes. Journal of Nuclear Medicine, 2018, 59, 1894-1900.	5.0	36
93	MyD88/CD40 signaling retains CAR T cells in a less differentiated state. JCI Insight, 2020, 5, .	5.0	34
94	A Chimeric GM-CSF/IL18 Receptor to Sustain CAR T-cell Function. Cancer Discovery, 2021, 11, 1661-1671.	9.4	33
95	Expansion of HER2-CAR T cells after lymphodepletion and clinical responses in patients with advanced sarcoma Journal of Clinical Oncology, 2017, 35, 10508-10508.	1.6	32
96	Improved survival rate in T-cell depleted haploidentical hematopoietic cell transplantation over the last 15 years at a single institution. Bone Marrow Transplantation, 2020, 55, 929-938.	2.4	31
97	Abstract LB-147: Administration of HER2-CAR T cells after lymphodepletion safely improves T cell expansion and induces clinical responses in patients with advanced sarcomas. Cancer Research, 2019, 79, LB-147-LB-147.	0.9	30
98	CD28 and 41BB Costimulation Enhances the Effector Function of CD19-Specific Engager T Cells. Cancer Immunology Research, 2017, 5, 860-870.	3.4	29
99	Selectively targeting myeloid-derived suppressor cells through TRAIL receptor 2 to enhance the efficacy of CAR T cell therapy for treatment of breast cancer. , 2021, 9, e003237.		29
100	Outcome of hematopoietic stem cell transplant as salvage therapy for Hodgkin's lymphoma in adolescents and young adults at a single institution. Leukemia and Lymphoma, 2010, 51, 664-670.	1.3	28
101	In vivoexpansion of LMP 1- and 2-specific T-cells in a patient who received donor-derived EBV-specific T-cells after allogeneic stem cell transplantation. Leukemia and Lymphoma, 2006, 47, 837-842.	1.3	27
102	T Cell-Activating Mesenchymal Stem Cells as a Biotherapeutic for HCC. Molecular Therapy - Oncolytics, 2017, 6, 69-79.	4.4	26
103	Crosstalk between Medulloblastoma Cells and Endothelium Triggers a Strong Chemotactic Signal Recruiting T Lymphocytes to the Tumor Microenvironment. PLoS ONE, 2011, 6, e20267.	2.5	26
104	IRAK-M Removal Counteracts Dendritic Cell Vaccine Deficits in Migration and Longevity. Journal of Immunology, 2010, 185, 4223-4232.	0.8	25
105	Good manufacturing practice-grade cytotoxic T lymphocytes specific for latent membrane proteins (LMP)-1 and LMP2 for patients with Epstein–Barr virus-associated lymphoma. Cytotherapy, 2011, 13, 518-522.	0.7	25
106	Chimeric Antigen Receptor-modified T cells targeting EphA2 for the immunotherapy of paediatric bone tumours. Cancer Gene Therapy, 2021, 28, 321-334.	4.6	25
107	Safety and Clinical Efficacy of Rapidly-Generated Trivirus-Directed T Cells After Allogeneic Hematopoietic Stem Cell Transplant. Blood, 2012, 120, 223-223.	1.4	25
108	Cellular immunotherapy for high-grade glioma. Immunotherapy, 2011, 3, 423-434.	2.0	24

#	Article	IF	CITATIONS
109	Outcomes after Second Hematopoietic Stem Cell Transplantations in Pediatric Patients with Relapsed Hematological Malignancies. Biology of Blood and Marrow Transplantation, 2015, 21, 1266-1272.	2.0	24
110	Is CMV a target in pediatric glioblastoma? Expression of CMV proteins, pp65 and IE1-72 and CMV nucleic acids in a cohort of pediatric glioblastoma patients. Journal of Neuro-Oncology, 2015, 125, 307-315.	2.9	24
111	High Incidence of Autoimmune Disease after Hematopoietic Stem Cell Transplantation for Chronic Granulomatous Disease. Biology of Blood and Marrow Transplantation, 2018, 24, 1643-1650.	2.0	24
112	Antitumor Effects of CAR T Cells Redirected to the EDB Splice Variant of Fibronectin. Cancer Immunology Research, 2021, 9, 279-290.	3.4	24
113	Paediatric Strategy Forum for medicinal product development of chimeric antigen receptor T-cells in children and adolescents with cancer. European Journal of Cancer, 2022, 160, 112-133.	2.8	24
114	Common Trajectories of Highly Effective CD19-Specific CAR T Cells Identified by Endogenous T-cell Receptor Lineages. Cancer Discovery, 2022, 12, 2098-2119.	9.4	24
115	A Single Institution Experience With Pediatric Nasopharyngeal Carcinoma: High Incidence of Toxicity Associated With Platinum-based Chemotherapy Plus IMRT. Journal of Pediatric Hematology/Oncology, 2007, 29, 500-505.	0.6	23
116	Contact-activated Monocytes: Efficient Antigen Presenting Cells for the Stimulation of Antigen-specific T cells. Journal of Immunotherapy, 2007, 30, 96-107.	2.4	23
117	Successful Treatment of Stem Cell Graft Failure in Pediatric Patients Using a Submyeloablative Regimen of Campath-1H and Fludarabine. Biology of Blood and Marrow Transplantation, 2008, 14, 1298-1304.	2.0	21
118	Outcomes after Allogeneic Transplant in Patients with Wiskott-Aldrich Syndrome. Biology of Blood and Marrow Transplantation, 2018, 24, 537-541.	2.0	21
119	Oncolytic adenovirus and gene therapy with EphA2-BiTE for the treatment of pediatric high-grade gliomas. , 2021, 9, e001930.		21
120	Dendritic Cell Function After Gene Transfer with Adenovirus-calcium Phosphate Co-precipitates. Molecular Therapy, 2007, 15, 386-392.	8.2	20
121	Early and Late Factors Impacting Patient and Graft Outcome in Pediatric Liver Transplantation. Journal of Pediatric Gastroenterology and Nutrition, 2017, 65, e53-e59.	1.8	20
122	The Landscape of CAR T Cells Beyond Acute Lymphoblastic Leukemia for Pediatric Solid Tumors. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2018, 38, 830-837.	3.8	20
123	Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape. Journal of Clinical Investigation, 2019, 129, 3464-3464.	8.2	20
124	Impact of High Disease Burden on Survival in Pediatric Patients with B-ALL Treated with Tisagenlecleucel. Transplantation and Cellular Therapy, 2022, 28, 73.e1-73.e9.	1.2	20
125	Preferential expansion of CD8+ CD19-CAR T cells postinfusion and the role of disease burden on outcome in pediatric B-ALL. Blood Advances, 2022, 6, 5737-5749.	5.2	20
126	Administration of Latent Membrane Protein 2–Specific Cytotoxic T Lymphocytes to Patients with Relapsed Epstein-Barr Virus–Positive Lymphoma. Clinical Lymphoma and Myeloma, 2006, 6, 342-347.	1.4	19

#	Article	IF	CITATIONS
127	A Th1-inducing Adenoviral Vaccine for Boosting Adoptively Transferred T Cells. Molecular Therapy, 2011, 19, 211-217.	8.2	19
128	Targeting of Lysosomal Acid Phosphatase with Altered Carbohydrate. Biological Chemistry Hoppe-Seyler, 1989, 370, 75-80.	1.4	18
129	Chronic active Epstein-Barr virus infection of natural killer cells presenting as severe skin reaction to mosquito bites. Journal of Allergy and Clinical Immunology, 2005, 116, 470-472.	2.9	17
130	CAR T-cell therapy for glioblastoma: ready for the next round of clinical testing?. Expert Review of Anticancer Therapy, 2018, 18, 451-461.	2.4	17
131	Engineering for Success: Approaches to Improve Chimeric Antigen Receptor TÂCell Therapy for Solid Tumors. Drugs, 2019, 79, 401-415.	10.9	17
132	How to design effective vaccines: lessons from an old success story. Expert Review of Vaccines, 2009, 8, 543-546.	4.4	16
133	Genetically Modified T Cells to Target Glioblastoma. Frontiers in Oncology, 2013, 3, 322.	2.8	16
134	EBV-Directed T Cell Therapeutics for EBV-Associated Lymphomas. Methods in Molecular Biology, 2017, 1532, 255-265.	0.9	16
135	Epstein-Barr Virus (EBV)-derived BARF1 encodes CD4- and CD8-restricted epitopes as targets for T-cell immunotherapy. Cytotherapy, 2019, 21, 212-223.	0.7	16
136	Genetically Modified T-Cell Therapy for Osteosarcoma. Advances in Experimental Medicine and Biology, 2014, 804, 323-340.	1.6	16
137	Current Allogeneic Hematopoietic Stem Cell Transplantation for Pediatric Acute Lymphocytic Leukemia: Success, Failure and Future Perspectives—A Single-Center Experience, 2008 to 2016. Biology of Blood and Marrow Transplantation, 2018, 24, 1424-1431.	2.0	15
138	A Novel Orthotopic Implantation Technique for Osteosarcoma Produces Spontaneous Metastases and Illustrates Dose-Dependent Efficacy of B7-H3-CAR T Cells. Frontiers in Immunology, 2021, 12, 691741.	4.8	15
139	In Situ Liver Expression of HBsAg/CD3-Bispecific Antibodies for HBV Immunotherapy. Molecular Therapy - Methods and Clinical Development, 2017, 7, 32-41.	4.1	14
140	Long-term follow-up for the development of subsequent malignancies in patients treated with genetically modified IECs. Blood, 2022, 140, 16-24.	1.4	14
141	Immunotherapeutic options for Epstein–Barr virus-associated lymphoproliferative disease following transplantation. Immunotherapy, 2010, 2, 663-671.	2.0	13
142	Advances in immunotherapy for pediatric acute myeloid leukemia. Expert Opinion on Biological Therapy, 2018, 18, 51-63.	3.1	13
143	The Art and Science of Selecting a CD123-Specific Chimeric Antigen Receptor for Clinical Testing. Molecular Therapy - Methods and Clinical Development, 2020, 18, 571-581.	4.1	13
144	Harnessing T Cells to Target Pediatric Acute Myeloid Leukemia: CARs, BiTEs, and Beyond. Children, 2020, 7, 14.	1.5	13

9

#	Article	IF	CITATIONS
145	Evidence generation and reproducibility in cell and gene therapy research: A call to action. Molecular Therapy - Methods and Clinical Development, 2021, 22, 11-14.	4.1	13
146	Donor-derived multiple leukemia antigen–specific T-cell therapy to prevent relapse after transplantÂin patients with ALL. Blood, 2022, 139, 2706-2711.	1.4	13
147	Computer-Assisted Quantitative Evaluation of Therapeutic Responses for Lymphoma Using Serial PET/CT Imaging. Academic Radiology, 2010, 17, 479-488.	2.5	12
148	Adoptive cell therapy for sarcoma. Immunotherapy, 2015, 7, 21-35.	2.0	12
149	Chimeric Antigen Receptor Signaling Domains Differentially Regulate Proliferation and Native T Cell Receptor Function in Virus-Specific T Cells. Frontiers in Medicine, 2018, 5, 343.	2.6	12
150	A Costimulatory CAR Improves TCR-based Cancer Immunotherapy. Cancer Immunology Research, 2022, 10, 512-524.	3.4	12
151	T-cell-biased immune responses generated by a mucosally targeted adenovirus-σ1 vaccine. Mucosal Immunology, 2012, 5, 311-319.	6.0	10
152	Targeting CD19: the good, the bad, and CD81. Blood, 2017, 129, 9-10.	1.4	10
153	Engineering oncolytic vaccinia virus to redirect macrophages to tumor cells. Advances in Cell and Gene Therapy, 2021, 4, e99.	0.9	10
154	Infectious Complications in Pediatric, Adolescent and Young Adult Patients Undergoing CD19-CAR T Cell Therapy. Frontiers in Oncology, 2022, 12, 845540.	2.8	10
155	Allogeneic hematopoietic stem cell transplant for relapsed and refractory non-Hodgkin lymphoma in pediatric patients. Blood Advances, 2019, 3, 2689-2695.	5.2	9
156	Man's Best Friend: Utilizing Naturally Occurring Tumors in Dogs to Improve Chimeric Antigen Receptor T-cell Therapy for Human Cancers. Molecular Therapy, 2016, 24, 1511-1512.	8.2	8
157	Toward Functional Immune Monitoring in Allogeneic Stem Cell Transplant Recipients. Biology of Blood and Marrow Transplantation, 2020, 26, 911-919.	2.0	8
158	B7-H3 Specific CAR T Cells for the Naturally Occurring, Spontaneous Canine Sarcoma Model. Molecular Cancer Therapeutics, 2022, 21, 999-1009.	4.1	8
159	Highlights of the Second International Conference on "Immunotherapy in Pediatric Oncology― Pediatric Hematology and Oncology, 2011, 28, 459-460.	0.8	7
160	Salvage regimens for pediatric patients with relapsed nasopharyngeal carcinoma. Pediatric Blood and Cancer, 2019, 66, e27469.	1.5	7
161	Outcomes of pediatric patients who relapse after first HCT for acute leukemia or MDS. Bone Marrow Transplantation, 2021, 56, 1866-1875.	2.4	7
162	Cytolytic Activity of CAR T Cells and Maintenance of Their CD4+ Subset Is Critical for Optimal Antitumor Activity in Preclinical Solid Tumor Models. Cancers, 2021, 13, 4301.	3.7	7

#	Article	IF	CITATIONS
163	Genetically Modified T-Cell Therapy for Osteosarcoma: Into the Roaring 2020s. Advances in Experimental Medicine and Biology, 2020, 1257, 109-131.	1.6	7
164	Abstract 3500: T cells redirected against HER2 for the adoptive immunotherapy for HER2-positive osteosarcoma. Cancer Research, 2012, 72, 3500-3500.	0.9	7
165	Enhanced Transduction Lentivector Gene Therapy for Treatment of Older Patients with X-Linked Severe Combined Immunodeficiency. Blood, 2019, 134, 608-608.	1.4	7
166	Transgenic Expression of IL15 Retains CD123-Redirected T Cells in a Less Differentiated State Resulting in Improved Anti-AML Activity in Autologous AML PDX Models. Frontiers in Immunology, 2022, 13, .	4.8	7
167	Transient blockade of TBK1/IKKε allows efficient transduction of primary human natural killer cells with vesicular stomatitis virus G-pseudotyped lentiviral vectors. Cytotherapy, 2021, 23, 787-792.	0.7	6
168	Immune therapy for EBV infections after hemopoietic stem-cell transplant. Cytotherapy, 2002, 4, 433-434.	0.7	5
169	Aggressive peripheral CD70â€positive tâ€cell lymphoma associated with severe chronic active EBV infection. Pediatric Blood and Cancer, 2012, 59, 758-761.	1.5	5
170	Administration of Tumor-Specific Cytotoxic T Lymphocytes Engineered to Resist TGF-ß to Patients with EBV-Associated Lymphomas. Blood, 2010, 116, 560-560.	1.4	5
171	Synergistic Antitumor Effects of Chimeric Antigen Receptor-Modified T Cells and Oncolytic Virotherapy. Blood, 2014, 124, 5808-5808.	1.4	5
172	Safety of Multiple Doses of CAR T Cells. Blood, 2015, 126, 4425-4425.	1.4	5
173	Foreign or Domestic CARs: Receptor Ligands as Antigen-Binding Domains. Medical Sciences (Basel,) Tj ETQq1 1 0.	784314 r 2.9	gBT /Overloc
174	Preventing Ubiquitination Improves CAR T Cell Therapy via â€~CAR Merry-Go-Around'. Immunity, 2020, 53, 243-245.	14.3	4
175	Two-Pronged Cell Therapy for B-Cell Malignancies: Engineering NK Cells to Target CD22 and Redirect Bystander T Cells to CD19. Blood, 2016, 128, 4560-4560.	1.4	4
176	Expect the unexpected: <i>piggyBac</i> and lymphoma. Blood, 2021, 138, 1379-1380.	1.4	4
177	Development of a cGMP-compliant process to manufacture donor-derived, CD45RA-depleted memory CD19-CAR T cells. Gene Therapy, 2023, 30, 222-231.	4.5	4
178	Highlights of the Third International Conference on Immunotherapy in Pediatric Oncology. Pediatric Hematology and Oncology, 2013, 30, 349-366.	0.8	3
179	Intravesicular Cidofovir for BK Hemorrhagic Cystitis in Pediatric Patients after Hematopoietic Stem Cell Transplant. Biology of Blood and Marrow Transplantation, 2016, 22, S163-S164.	2.0	3
180	IMMU-13. CRISPR/CAS9-MEDIATED SILENCING OF SHP-1 SIGNIFICANTLY ENHANCES THE ANTI-GLIOMA ACTIVITY OF IL-13Rα2 CAR T CELLS. Neuro-Oncology, 2019, 21, ii95-ii96.	1.2	3

#	Article	IF	CITATIONS
181	Haploidentical CD45RA-Negative Donor Lymphocyte Infusions Are Feasible, Safe and Associated with Clinical Benefit. Biology of Blood and Marrow Transplantation, 2020, 26, S268.	2.0	3
182	Successful SCID gene therapy in infant with disseminated BCG. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 993-995.e1.	3.8	3
183	CD70-Specific CAR T Cells Have Potent Activity Against Acute Myeloid Leukemia (AML) without HSC Toxicity. Blood, 2019, 134, 1932-1932.	1.4	3
184	Allogeneic Hematopoietic Cell Transplantation Is Critical to Maintain Remissions after CD19-CAR T-Cell Therapy for Pediatric ALL: A Single Center Experience. Blood, 2020, 136, 39-40.	1.4	3
185	Venetoclax Enhances Anti-Leukemia Activity of CD123-Specific BiTE-Secreting T-Cells in AML. Blood, 2020, 136, 12-13.	1.4	3
186	T-Cells Redirected Against CD70 for the Immunotherapy of Hematological Malignancies Blood, 2007, 110, 2757-2757.	1.4	3
187	Targeting ceramide synthase 6–dependent metastasis-prone phenotype in lung cancer cells. Journal of Clinical Investigation, 2019, 129, 3464-3464.	8.2	3
188	CD45RA-Depleted Haploidentical Transplantation Combined with NK Cell Addback Results in Promising Long-Term Outcomes in Pediatric Patients with High-Risk Hematologic Malignancies. Blood, 2021, 138, 172-172.	1.4	3
189	Clinical and Virological Characteristics of Patients with Chronic Active Epsteinâ€Barr Virus Infection Treated with Hematopoietic Stem Cell Transplantation: Insights and Questions. Clinical Infectious Diseases, 2008, 46, 1535-1536.	5.8	2
190	Haploidentical Stem Cell Transplants in Children With Acute Lymphoblastic Leukemia in First or Second Remission. Biology of Blood and Marrow Transplantation, 2011, 17, S310-S311.	2.0	2
191	Generating CTLs against the subdominant EBV LMP antigens by transient expression of an A20 inhibitor with EBV LMP proteins in human DCs. Gene Therapy, 2012, 19, 818-827.	4.5	2
192	Targeting EBV's Achilles' heel with antigen-specific T cells. Immunotherapy, 2013, 5, 353-355.	2.0	2
193	Administration of LMP-specific cytotoxic T-lymphocytes to patients with relapsed EBV-positive lymphoma post allogeneic stem cell transplant. Cytotherapy, 2015, 17, S18.	0.7	2
194	Genetically Modified T-cell Therapy for the Treatment of Osteosarcoma: An Update. Journal of Clinical & Cellular Immunology, 2016, 07, .	1.5	2
195	139â€Establishment of canine CAR T cells treatment model for solid tumor immunotherapy development. , 2020, , .		2
196	Abstract LB-147: Administration of HER2-CAR T cells after lymphodepletion safely improves T cell expansion and induces clinical responses in patients with advanced sarcomas. , 2019, , .		2
197	Lentiviral Gene Therapy with Low Dose Busulfan for Infants with X-SCID Results in the Development of a Functional Normal Immune System: Interim Results of an Ongoing Phase I/II Clinical Study. Blood, 2019, 134, 2058-2058.	1.4	2
198	LMP2-Cytotoxic T Lymphocyte Therapy for Relapsed EBV Positive Lymphoma Blood, 2004, 104, 3276-3276.	1.4	2

#	Article	IF	CITATIONS
199	CD45RO+ T-Cell Add Back and Prophylactic Blinatumomab Administration Post Tcrαβ/CD19-Depleted Haploidentical Transplantation in Pediatric Patients with High Risk Acute Leukemia. Blood, 2021, 138, 2897-2897.	1.4	2
200	Outcome of alternative donor transplantation for severe aplastic anemia can be comparable to outcome with matched related donors. Biology of Blood and Marrow Transplantation, 2006, 12, 26-27.	2.0	1
201	TILling head and neck cancer for cell therapy. Cytotherapy, 2011, 13, 772-773.	0.7	1
202	Reduced-intensity SCT for chronic active EBV infection: excellent outcomes should trigger future investigations on how EBV-positive recipient cells are eradicated. Bone Marrow Transplantation, 2011, 46, 18-19.	2.4	1
203	Interleukin-13 receptor α2: glioma's unlucky receptor?. Cytotherapy, 2012, 14, 645-646.	0.7	1
204	Adoptive Transfer of Rapidly-Generated Multivirus-Specific T Cells to Treat Adenovirus, EBV and CMV Infections of Hematopoietic Stem Cell Transplant Recipients. Biology of Blood and Marrow Transplantation, 2012, 18, S219.	2.0	1
205	Evaluating Donor Lymphocyte Infusions (DLI) for the Treatment of Falling Chimerism, Minimal Residual Disease and Relapse After Pediatric Hematopoietic Stem Cell Transplantation (HSCT). Biology of Blood and Marrow Transplantation, 2013, 19, S195-S196.	2.0	1
206	Harnessing the Immune System to Potentiate Oncolytics. Molecular Therapy, 2014, 22, 239-240.	8.2	1
207	Administration of LMP-Specific Cytotoxic T-Lymphocytes to Patients with Relapsed EBV-Positive Lymphoma Post Allogeneic Stem Cell Transplant. Biology of Blood and Marrow Transplantation, 2015, 21, S148.	2.0	1
208	19. A Phase I Clinical Trial of Autologous HER2 CMV Bispecific CAR T Cells for Progressive Glioblastoma. Molecular Therapy, 2015, 23, S9.	8.2	1
209	282. A scFv-Based CAR To Redirect T Cells To IL13Ra2-Positive Glioma. Molecular Therapy, 2015, 23, S113.	8.2	1
210	721. Safety of Multiple Doses of CAR T Cells. Molecular Therapy, 2015, 23, S288.	8.2	1
211	Costimulation to enhance the antitumor activity of CD19 eng T cells. , 2015, 3, .		1
212	Response to "In vivo secretion of anti-CD3 × anti-tumor bispecific antibodies by gene-modified cells: over a decade of T-cell engagement― Molecular Therapy, 2015, 23, 613.	8.2	1
213	Allogeneic Stem Cell Transplantation in a Pediatric Patient with Whim Syndrome. Biology of Blood and Marrow Transplantation, 2016, 22, S238.	2.0	1
214	Respiratory Viral Infections after Hematopoietic Stem Cell Transplants : The Texas Children's Hospital Experience. Biology of Blood and Marrow Transplantation, 2016, 22, S256-S257.	2.0	1
215	Matched Unrelated Allogeneic Stem Cell Transplantation for Congenital Amegakaryocytic Thrombocytopenia: Texas Children's Hospital Experience. Biology of Blood and Marrow Transplantation, 2016, 22, S237.	2.0	1
216	Improving CD123-Targeted T-Cell Therapy for Acute Myeloid Leukemia. Biology of Blood and Marrow Transplantation, 2018, 24, S232.	2.0	1

#	Article	IF	CITATIONS
217	Autologous CD19-CAR T-Cells for the Treatment of Acute Lymphoblastic Leukemia in Pediatric and Young Adult Patients: An initial Report from an Institutional Phase I/II Study. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, S265.	0.4	1
218	IMMU-14. IMPLICATIONS FOR T-CELL IMMUNOTHERAPY: CELL SURFACE ANTIGEN AND HLA class I EXPRESSION IN PEDIATRIC BRAIN TUMORS ARE HETEROGENOUS. Neuro-Oncology, 2019, 21, ii96-ii96.	1.2	1
219	Abstract 1543: Mining cancer-specific isoforms as CAR T-cell therapy targets for pediatric solid and brain tumors. , 2021, , .		1
220	GRP78 Is Expressed on the Cell Surface of Pediatric AML Blasts and Can be Targeted with GRP78-CAR T Cells without Toxicity to Hematopoietic Progenitor Cells. Blood, 2020, 136, 12-12.	1.4	1
221	Safety and Preliminary Efficacy of "Ready to Administer" Cytomegalovirus (CMV)-Specific T Cells for the Treatment of Patients with Refractory CMV Infection. Blood, 2016, 128, 388-388.	1.4	1
222	CASPALLO: Phase I Clinical Trial of Allodepleted T Cells Transduced with Inducible Caspase 9 Suicide Gene After Haploidentical Stem Cell Transplantation. Blood, 2010, 116, 559-559.	1.4	1
223	Complete Tumor Responses in Lymphoma Patients Receiving Autologous Cytotoxic T Lymphocytes Targeting Epstein Barr Virus (EBV) - Latent Membrane Proteins. Blood, 2011, 118, 956-956.	1.4	1
224	Abstract LB-199: A rationally designed bispecific chimeric antigen receptor molecule that simultaneously redirects T cells to target HER2 and GD2 in osteosarcoma. Cancer Research, 2014, 74, LB-199-LB-199.	0.9	1
225	Engineering Naturally Occurring CD7 Negative Cells for the Immunotherapy of CD7 Positive Leukemia. Blood, 2019, 134, 868-868.	1.4	1
226	Transgenic Expression of IL15 in CD123-Specific BiTE-Secreting Engager T-Cells Results in Improved Anti-AML Activity. Blood, 2019, 134, 3917-3917.	1.4	1
227	Multi-Omic Based Antigen Discovery for the Immunotherapy of Pediatric Acute T Cell Lymphoblastic Leukemia. Blood, 2020, 136, 17-18.	1.4	1
228	Unifying heterogeneous expression data to predict targets for CAR-T cell therapy. OncoImmunology, 2021, 10, 2000109.	4.6	1
229	Sub-myeloablative Second Transplantations with Haploidentical Donors and Post-Transplant Cyclophosphamide have limited Anti-Leukemic Effects in Pediatric Patients. Transplantation and Cellular Therapy, 2022, 28, 262.e1-262.e10.	1.2	1
230	Venetoclax-Based Combination Therapy As a Bridge to Allogeneic Hematopoietic Stem Cell Transplant in Children with Relapsed/Refractory AML. Transplantation and Cellular Therapy, 2022, 28, S120-S121.	1.2	1
231	CAR TÂcell therapy for solid tumors: Fatal attraction requires adhesion. Med, 2022, 3, 353-354.	4.4	1
232	Killing 2 birds with 1 stone. Blood, 2003, 102, 4253-4254.	1.4	0
233	Improving Immunotherapy Targeted at Subdominant Tumor Antigens. Journal of Immunotherapy, 2005, 28, 614.	2.4	0
234	Activation of LMP1- and LMP2-specific T-cells for the immunotherapy of EBV positive malignancies with an adenoviral vector encoding full length LMP1 and LMP2. Biology of Blood and Marrow Transplantation, 2006, 12, 16-17.	2.0	0

#	Article	IF	CITATIONS
235	766. Immunotherapy for Her2-Positive Medulloblastoma: Regression of Experimental Tumors by Transfer of Her2-Redirected T Cells In Vivo. Molecular Therapy, 2006, 13, S296.	8.2	0
236	81: Enhancing the in vivo expansion of adoptively transferred EBV-CTL with lymphodepleting CD45 monoclonal antibodies in NPC patients. Biology of Blood and Marrow Transplantation, 2007, 13, 32-33.	2.0	0
237	252: Outcome of allogeneic hematopoietic stem cell transplantation for pediatric patients with chronic myeloid leukemia. Biology of Blood and Marrow Transplantation, 2007, 13, 92-93.	2.0	0
238	Stem Cell Transplant for HLH: Single Institution Series. Biology of Blood and Marrow Transplantation, 2011, 17, S263-S264.	2.0	0
239	Outcomes in Pediatric Patients With Engraftment Failure After Allogeneic Transplants. Biology of Blood and Marrow Transplantation, 2013, 19, S253-S254.	2.0	0
240	Application of Anti-Viral Adoptive T-Cell Therapy to Primary Immunodeficiency Patients. Journal of Allergy and Clinical Immunology, 2013, 131, AB139.	2.9	0
241	Outcomes After Second Allogeneic Transplants in Pediatric Patients With Relapsed Hematological Malignancies. Biology of Blood and Marrow Transplantation, 2013, 19, S253.	2.0	0
242	Anti-Tumor Effects of Chimeric Receptor Engineered Human T Cells Directed to Tumor Stroma. Biology of Blood and Marrow Transplantation, 2013, 19, S348-S349.	2.0	0
243	A New Class of Antigen T-Cells That Redirect Bystander T-Cells to CD19 Positive Malignancies. Biology of Blood and Marrow Transplantation, 2014, 20, S71.	2.0	0
244	Umbilical Cord Blood Transplantation Can be an Effective Therapy for Patients with Primary Immunodeficiency Diseases Who Lack an HLA-Matched Related Donor. Biology of Blood and Marrow Transplantation, 2014, 20, S175-S176.	2.0	0
245	Outcome after Allogeneic Stem Cell Transplant for Patients with Hematological Malignancies and Associated Chromosome 7 Deletions. Biology of Blood and Marrow Transplantation, 2014, 20, S178.	2.0	0
246	Outcome after Stem Cell Transplant in Patients with Dyskeratosis Congenita. Biology of Blood and Marrow Transplantation, 2014, 20, S178-S179.	2.0	0
247	Refined/Accelerated T Cell Therapies for the Treatment of EBV+ Lymphomas. Biology of Blood and Marrow Transplantation, 2014, 20, S134.	2.0	0
248	Cell carriers to attack glioma. Cytotherapy, 2014, 16, 871-872.	0.7	0
249	Umbilical Cord Blood Transplantation Conditioned without Serotherapy Is an Excellent Curative Alternative for Pediatric Non-Malignant Diseases. Biology of Blood and Marrow Transplantation, 2015, 21, S103-S104.	2.0	0
250	Mixed Donor Chimerism after Allogeneic Transplant in Patients with Wiskott-Aldrich Syndrome. Biology of Blood and Marrow Transplantation, 2015, 21, S236.	2.0	0
251	Outcomes after Allogeneic Stem Cell Transplantation for Patients with Non-Hodgkin Lymphoma: Texas Children's Hospital Experience 1999-2013. Biology of Blood and Marrow Transplantation, 2015, 21, S211-S212.	2.0	0

B7-h3-specific engager T cells for the immunotherapy of pediatric solid tumors. , 2015, 3, .

0

#	Article	IF	CITATIONS
253	IM-02 * A scFv-BASED CAR TO REDIRECT T CELLS TO IL13RÂ2-POSITIVE PEDIATRIC GLIOMA. Neuro-Oncology, 2015, 17, iii15-iii15.	1.2	0
254	Safety of multiple doses of car T cells. Cytotherapy, 2015, 17, S12-S13.	0.7	0
255	76. Transgenic Expression of IL15 Improves Antiglioma Activity of IL13Rα2-CAR T Cells. Molecular Therapy, 2016, 24, S33.	8.2	0
256	Long-Term Organ Function in Children Following Hematopoietic Stem Cell Transplantation for Chronic Granulomatous Disease. Biology of Blood and Marrow Transplantation, 2016, 22, S239-S240.	2.0	0
257	Outcomes after Matched Unrelated Donor Stem Cell Transplantation in Chronic Granulomatous Disease – an Update. Biology of Blood and Marrow Transplantation, 2016, 22, S378.	2.0	0
258	IVIG Prophylaxis in Pediatric Patients Undergoing Hematopoietic Stem Cell Transplant: A Retrospective Analysis of Monthly Intravenous Immunoglobulin Infusion vs. IgG Level Based Dosing. Biology of Blood and Marrow Transplantation, 2016, 22, S244.	2.0	0
259	Infectious Mononucleosis and Other Epstein-Barr Virus–Associated Diseases. , 2018, , 747-759.		0
260	Adoptive T-Cell Therapy for Acute Lymphoblastic Leukemia Targeting Multiple Tumor-Associated Antigens. Biology of Blood and Marrow Transplantation, 2019, 25, S62-S63.	2.0	0
261	Second Allogeneic Hematopoietic Cell Transplant Is a Successful Salvage Modality for Pediatric Patients Who Relapse after First Transplant. Biology of Blood and Marrow Transplantation, 2020, 26, S85-S86.	2.0	0
262	Employing Synthetic T-cell Biology to Target AML without On-Target/Off-Cancer Toxicity. Blood Cancer Discovery, 2021, 2, 559-561.	5.0	0
263	Post-transplant Lymphoproliferative Disease. , 2021, , 265-276.		0
264	EBV Lymphoproliferative Disease After Transplantation. , 2004, , 259-270.		0
265	Retrovirus-Transduced T Cell Blasts Have Not Only Antigen-Presenting Capabilities but Also Suppressor Regulatory T Cell-Inducing Capability Blood, 2004, 104, 3855-3855.	1.4	0
266	Outcome of Alternative Donor Transplantation for Severe Aplastic Anemia Can Be Comparable to Outcome with Matched Related Donors Blood, 2005, 106, 2052-2052.	1.4	0
267	Transplantation from Matched Unrelated Donors (MUD) for Thalassemia and Other Congenital Red Cell Disorders Blood, 2005, 106, 2746-2746.	1.4	0
268	The Use of Autologous LMP2-Specific Cytotoxic T Lymphocytes (CTL) for the Treatment of Relapsed EBV-Positive Hodgkin Disease and Non-Hodgkin Lymphoma Blood, 2005, 106, 773-773.	1.4	0
269	EBV Lymphoproliferative Disease after Transplantation. , 2008, , 449-465.		0
270	Complete Tumor Responses in Lymphoma Patients Who Receive Autologous Cytotoxic T Lymphocytes Targeting EBV Latent Membrane Proteins. Blood, 2008, 112, 230-230.	1.4	0

#	Article	IF	CITATIONS
271	Towards Phase 2/3 Trials for Epstein - Barr Virus (EBV)-Associated Malignancies,. Blood, 2011, 118, 4043-4043.	1.4	0
272	Vaccination with ΔCD40L or Flagellin Gene-Modified T Cells Activates Dendritic Cells In Vivo and Induces a Potent Anti-Tumor Immune Response. Blood, 2011, 118, 1909-1909.	1.4	0
273	Abstract PR16: Genetically engineered T cells redirected against cancer-associated fibroblasts to potentiate immunotherapeutic effects , 2013, , .		0
274	Abstract IA26: Stroma-targeted immunotherapy. , 2013, , .		0
275	Nonviral Gene Delivery Using Dna: Synthetic Peptide Complexes. Medical Science Symposia Series, 1996, , 337-345.	0.0	0
276	Abstract LB-264: Two is better than one: Adoptive T cell therapy targeting tumor antigens and the tumor endothelium potentiates T cell activation and cytolytic activity. , 2014, , .		0
277	Abstract B8: Adoptive immunotherapy targeting tumor heterogeneity in high-grade glioma (HGG). , 2014, , .		Ο
278	CD123-Engager T Cells As a Novel Immunotherapeutic for AML. Blood, 2014, 124, 3762-3762.	1.4	0
279	Abstract B74: Co-targeting the tumor and its associated vasculature in glioblastoma. , 2015, , .		0
280	Matched Unrelated Allogeneic Stem Cell Transplantation for Patients with Congenital Amegakaryocytic Thrombocytopenia: Texas Children`s Hospital Experience. Blood, 2015, 126, 5529-5529.	1.4	0
281	Fast and Efficient Gene Editing in Human Hematopoietic Cells. Blood, 2016, 128, 4704-4704.	1.4	0
282	Antigen-dependent costimulation to improve T-cell therapy for cancer Journal of Clinical Oncology, 2017, 35, 151-151.	1.6	0
283	Sequential Infusion of Tcrαβ- and CD45RA-Depleted Haploidentical Progenitor Cells Is Safe and Allows for Rapid Immune Reconstitution in Pediatric Patients with Recurrent Hematological Malignancies. Blood, 2018, 132, 4574-4574.	1.4	0
284	Inducible MyD88 Signaling Enhances the Anti-AML Activity of BiTE-Secreting ENG T-Cells. Blood, 2019, 134, 4441-4441.	1.4	0
285	IMMU-06. T-CELL IMMUNOTHERAPY FOR PEDIATRIC BRAIN TUMORS: DIVERSITY IN CELL SURFACE ANTIGEN AND HLA EXPRESSION NECESSITATES A MULTI-PRONGED APPROACH. Neuro-Oncology, 2020, 22, iii360-iii361.	1.2	Ο
286	IMMU-05. B7-H3-SPECIFIC CAR T CELLS HAVE POTENT ANTI-TUMOR ACTIVITY IN THE GL261 IMMUNE-COMPETENT MURINE BRAIN TUMOR MODEL. Neuro-Oncology, 2020, 22, iii360-iii360.	1.2	0
287	Donor-Derived Adoptive T-Cell Therapy Targeting Multiple Tumor Associated Antigens to Prevent Post-Transplant Relapse in Patients with ALL. Blood, 2021, 138, 471-471.	1.4	Ο
288	CD19-CAR T Cells Develop Exhaustion Epigenetic Programs during a Clinical Response. Blood, 2021, 138, 2782-2782.	1.4	0

#	Article	IF	CITATIONS
289	152â€Common trajectories of highly effective anti-CD19 chimeric antigen receptor-modified T cells identified by endogenous T cell receptor lineages. , 2021, 9, A160-A161.		0
290	EXTH-20. SYNGENEIC B7-H3-SPECIFIC CAR T-CELLS HAVE POTENT ANTI-BRAIN TUMOR ACTIVITY VIA LOCAL OR SYSTEMIC DELIVERY. Neuro-Oncology, 2020, 22, ii91-ii91.	1.2	0
291	EXTH-73. HETEROGENEITY IN CELL SURFACE ANTIGEN AND HLA CLASS I EXPRESSION IN PEDIATRIC BRAIN TUMORS AND ITS IMPACT ON T-CELL IMMUNOTHERAPY. Neuro-Oncology, 2020, 22, ii103-ii103.	1.2	0
292	Pediatric Patient and Caregiver Reported Symptom Burden, Anxiety, Depression, and Quality of Life during CD19-CAR T-Cell Therapy. Transplantation and Cellular Therapy, 2022, 28, S392.	1.2	0
293	Safety and Tolerability of Administering Leukemia-Specific Donor T Cells (mLSTs) after Allogeneic Transplant to Pediatric Patients with AML/MDS. Transplantation and Cellular Therapy, 2022, 28, S223.	1.2	0
294	CD45RA Depleted T-Cell Addback and Prophylactic Blinatumomab Administration Following Tcrαβ/CD19-Depleted Haploidentical Transplantation in Pediatric Patients with High Risk Acute Leukemia. Transplantation and Cellular Therapy, 2022, 28, S36.	1.2	0
295	Long Term Follow up for the Development of Subsequent Malignancies in Patients Treated with Genetically Modified Immune Effectors. Transplantation and Cellular Therapy, 2022, 28, S200-S201.	1.2	0
296	CD45RA-Depleted Haploidentical Transplantation Combined with NK Cell Addback Results in Promising Long-Term Outcomes in Pediatric Patients with High-Risk Hematologic Malignancies. Transplantation and Cellular Therapy, 2022, 28, S105.	1.2	0
297	Donor-Derived Adoptive T-Cell Therapy Targeting Multiple Tumor Associated Antigens to Prevent Post-Transplant Relapse in Patients with ALL. Transplantation and Cellular Therapy, 2022, 28, S24.	1.2	0