Jason S Mclellan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9092048/publications.pdf Version: 2024-02-01

	31902	22764
27,244	53	112
citations	h-index	g-index
157	157	30075
docs citations	times ranked	citing authors
	citations 157	27,244 53 citations h-index 157 157

#	Article	IF	CITATIONS
1	Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, 367, 1260-1263.	6.0	7,517
2	Site-specific glycan analysis of the SARS-CoV-2 spike. Science, 2020, 369, 330-333.	6.0	1,277
3	SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature, 2020, 586, 567-571.	13.7	1,153
4	Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science, 2020, 369, 1501-1505.	6.0	977
5	Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7348-E7357.	3.3	944
6	Structure-Based Design of a Fusion Glycoprotein Vaccine for Respiratory Syncytial Virus. Science, 2013, 342, 592-598.	6.0	797
7	Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature, 2011, 480, 336-343.	13.7	794
8	Beyond Shielding: The Roles of Glycans in the SARS-CoV-2 Spike Protein. ACS Central Science, 2020, 6, 1722-1734.	5.3	727
9	Structure of RSV Fusion Glycoprotein Trimer Bound to a Prefusion-Specific Neutralizing Antibody. Science, 2013, 340, 1113-1117.	6.0	656
10	Pre-fusion structure of a human coronavirus spike protein. Nature, 2016, 531, 118-121.	13.7	623
11	Broad neutralization of SARS-related viruses by human monoclonal antibodies. Science, 2020, 369, 731-736.	6.0	534
12	Immunogenicity of a DNA vaccine candidate for COVID-19. Nature Communications, 2020, 11, 2601.	5.8	514
13	Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies. Cell, 2020, 181, 1004-1015.e15.	13.5	506
14	Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis. Scientific Reports, 2018, 8, 15701.	1.6	408
15	Vaccine Induction of Antibodies against a Structurally Heterogeneous Site of Immune Pressure within HIV-1 Envelope Protein Variable Regions 1 and 2. Immunity, 2013, 38, 176-186.	6.6	374
16	The respiratory syncytial virus vaccine landscape: lessons from the graveyard and promising candidates. Lancet Infectious Diseases, The, 2018, 18, e295-e311.	4.6	355
17	The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates. Science Translational Medicine, 2021, 13, .	5.8	347
18	Structure of Respiratory Syncytial Virus Fusion Glycoprotein in the Postfusion Conformation Reveals Preservation of Neutralizing Epitopes. Journal of Virology, 2011, 85, 7788-7796.	1.5	327

#	Article	IF	CITATIONS
19	Prefusion F–specific antibodies determine the magnitude of RSV neutralizing activity in human sera. Science Translational Medicine, 2015, 7, 309ra162.	5.8	312
20	Vulnerabilities in coronavirus glycan shields despite extensive glycosylation. Nature Communications, 2020, 11, 2688.	5.8	304
21	Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody. Science, 2021, 371, 823-829.	6.0	285
22	A glycan gate controls opening of the SARS-CoV-2 spike protein. Nature Chemistry, 2021, 13, 963-968.	6.6	254
23	Adjuvanting a subunit COVID-19 vaccine to induce protective immunity. Nature, 2021, 594, 253-258.	13.7	253
24	SARS-CoV-2 escape from a highly neutralizing COVID-19 convalescent plasma. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	251
25	A highly stable prefusion RSV F vaccine derived from structural analysis of the fusion mechanism. Nature Communications, 2015, 6, 8143.	5.8	248
26	Prevalent, protective, and convergent IgG recognition of SARS-CoV-2 non-RBD spike epitopes. Science, 2021, 372, 1108-1112.	6.0	210
27	A proof of concept for structure-based vaccine design targeting RSV in humans. Science, 2019, 365, 505-509.	6.0	207
28	Structure and Function of Respiratory Syncytial Virus Surface Glycoproteins. Current Topics in Microbiology and Immunology, 2013, 372, 83-104.	0.7	205
29	A highly potent extended half-life antibody as a potential RSV vaccine surrogate for all infants. Science Translational Medicine, 2017, 9, .	5.8	189
30	Respiratory syncytial virus entry and how to block it. Nature Reviews Microbiology, 2019, 17, 233-245.	13.6	187
31	Rapid profiling of RSV antibody repertoires from the memory B cells of naturally infected adult donors. Science Immunology, 2016, 1, .	5.6	180
32	Structural and molecular basis for Ebola virus neutralization by protective human antibodies. Science, 2016, 351, 1343-1346.	6.0	176
33	Structure-Based Vaccine Antigen Design. Annual Review of Medicine, 2019, 70, 91-104.	5.0	160
34	Structural basis of respiratory syncytial virus neutralization by motavizumab. Nature Structural and Molecular Biology, 2010, 17, 248-250.	3.6	156
35	Importance of Neutralizing Monoclonal Antibodies Targeting Multiple Antigenic Sites on the Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein To Avoid Neutralization Escape. Journal of Virology, 2018, 92, .	1.5	155
36	Prolonged evolution of the human B cell response to SARS-CoV-2 infection. Science Immunology, 2021, 6, .	5.6	153

#	Article	IF	CITATIONS
37	Molecular determinants and mechanism for antibody cocktail preventing SARS-CoV-2 escape. Nature Communications, 2021, 12, 469.	5.8	148
38	Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines. Cell, 2021, 184, 5432-5447.e16.	13.5	131
39	Infants Infected with Respiratory Syncytial Virus Generate Potent Neutralizing Antibodies that Lack Somatic Hypermutation. Immunity, 2018, 48, 339-349.e5.	6.6	126
40	Molecular mechanism of respiratory syncytial virus fusion inhibitors. Nature Chemical Biology, 2016, 12, 87-93.	3.9	121
41	Characterization of a Prefusion-Specific Antibody That Recognizes a Quaternary, Cleavage-Dependent Epitope on the RSV Fusion Glycoprotein. PLoS Pathogens, 2015, 11, e1005035.	2.1	106
42	Structure of a Major Antigenic Site on the Respiratory Syncytial Virus Fusion Glycoprotein in Complex with Neutralizing Antibody 101F. Journal of Virology, 2010, 84, 12236-12244.	1.5	105
43	Design and Characterization of Epitope-Scaffold Immunogens That Present the Motavizumab Epitope from Respiratory Syncytial Virus. Journal of Molecular Biology, 2011, 409, 853-866.	2.0	100
44	Molecular Architecture of Early Dissemination and Massive Second Wave of the SARS-CoV-2 Virus in a Major Metropolitan Area. MBio, 2020, 11, .	1.8	99
45	Neutralizing epitopes on the respiratory syncytial virus fusion glycoprotein. Current Opinion in Virology, 2015, 11, 70-75.	2.6	96
46	Structure and immunogenicity of pre-fusion-stabilized human metapneumovirus F glycoprotein. Nature Communications, 2017, 8, 1528.	5.8	86
47	The SARS-CoV-2 spike reversibly samples an open-trimer conformation exposing novel epitopes. Nature Structural and Molecular Biology, 2022, 29, 229-238.	3.6	81
48	Suptavumab for the Prevention of Medically Attended Respiratory Syncytial Virus Infection in Preterm Infants. Clinical Infectious Diseases, 2021, 73, e4400-e4408.	2.9	77
49	Global site-specific analysis of glycoprotein N-glycan processing. Nature Protocols, 2018, 13, 1196-1212.	5.5	71
50	Transient opening of trimeric prefusion RSV F proteins. Nature Communications, 2019, 10, 2105.	5.8	71
51	Early cross-coronavirus reactive signatures of humoral immunity against COVID-19. Science Immunology, 2021, 6, eabj2901.	5.6	67
52	Stabilized coronavirus spike stem elicits a broadly protective antibody. Cell Reports, 2021, 37, 109929.	2.9	64
53	Structural Definition of a Neutralization-Sensitive Epitope on the MERS-CoV S1-NTD. Cell Reports, 2019, 28, 3395-3405.e6.	2.9	63
54	Neutralization of Diverse Human Cytomegalovirus Strains Conferred by Antibodies Targeting Viral gH/gL/pUL128-131 Pentameric Complex. Journal of Virology, 2017, 91, .	1.5	60

#	Article	IF	CITATIONS
55	The 3.1-Angstrom Cryo-electron Microscopy Structure of the Porcine Epidemic Diarrhea Virus Spike Protein in the Prefusion Conformation. Journal of Virology, 2019, 93, .	1.5	59
56	Enhanced Neutralizing Antibody Response Induced by Respiratory Syncytial Virus Prefusion F Protein Expressed by a Vaccine Candidate. Journal of Virology, 2015, 89, 9499-9510.	1.5	58
57	Potent single-domain antibodies that arrest respiratory syncytial virus fusion protein in its prefusion state. Nature Communications, 2017, 8, 14158.	5.8	58
58	Therapeutic efficacy of a respiratory syncytial virus fusion inhibitor. Nature Communications, 2017, 8, 167.	5.8	58
59	Cross-reactive coronavirus antibodies with diverse epitope specificities and Fc effector functions. Cell Reports Medicine, 2021, 2, 100313.	3.3	56
60	Structural basis of respiratory syncytial virus subtype-dependent neutralization by an antibody targeting the fusion glycoprotein. Nature Communications, 2017, 8, 1877.	5.8	53
61	Structural, antigenic and immunogenic features of respiratory syncytial virus glycoproteins relevant for vaccine development. Vaccine, 2017, 35, 461-468.	1.7	53
62	Structural basis for recognition of the central conserved region of RSV G by neutralizing human antibodies. PLoS Pathogens, 2018, 14, e1006935.	2.1	50
63	Engineering, Structure and Immunogenicity of the Human Metapneumovirus F Protein in the Postfusion Conformation. PLoS Pathogens, 2016, 12, e1005859.	2.1	50
64	Cross-neutralizing antibodies bind a SARS-CoV-2 cryptic site and resist circulating variants. Nature Communications, 2021, 12, 5652.	5.8	49
65	Structure-Based Design of Prefusion-Stabilized Filovirus Glycoprotein Trimers. Cell Reports, 2020, 30, 4540-4550.e3.	2.9	46
66	Clinical Potential of Prefusion RSV F-specific Antibodies. Trends in Microbiology, 2018, 26, 209-219.	3.5	42
67	Protective neutralizing antibodies from human survivors of Crimean-Congo hemorrhagic fever. Cell, 2021, 184, 3486-3501.e21.	13.5	39
68	Continuous flexibility analysis of SARS-CoV-2 spike prefusion structures. IUCrJ, 2020, 7, 1059-1069.	1.0	39
69	A Cysteine Zipper Stabilizes a Pre-Fusion F Glycoprotein Vaccine for Respiratory Syncytial Virus. PLoS ONE, 2015, 10, e0128779.	1.1	38
70	Human Cytomegalovirus Glycoprotein B Nucleoside-Modified mRNA Vaccine Elicits Antibody Responses with Greater Durability and Breadth than MF59-Adjuvanted gB Protein Immunization. Journal of Virology, 2020, 94, .	1.5	37
71	Vaccination with prefusion-stabilized respiratory syncytial virus fusion protein induces genetically and antigenically diverse antibody responses. Immunity, 2021, 54, 769-780.e6.	6.6	37
72	Structure-Based Design of Nipah Virus Vaccines: A Generalizable Approach to Paramyxovirus Immunogen Development. Frontiers in Immunology, 2020, 11, 842.	2.2	36

#	Article	IF	CITATIONS
73	Local computational methods to improve the interpretability and analysis of cryo-EM maps. Nature Communications, 2021, 12, 1240.	5.8	36
74	A Combination of Receptor-Binding Domain and N-Terminal Domain Neutralizing Antibodies Limits the Generation of SARS-CoV-2 Spike Neutralization-Escape Mutants. MBio, 2021, 12, e0247321.	1.8	35
75	Adjuvanting a subunit SARS-CoV-2 vaccine with clinically relevant adjuvants induces durable protection in mice. Npj Vaccines, 2022, 7, .	2.9	32
76	Packaging and Prefusion Stabilization Separately and Additively Increase the Quantity and Quality of Respiratory Syncytial Virus (RSV)-Neutralizing Antibodies Induced by an RSV Fusion Protein Expressed by a Parainfluenza Virus Vector. Journal of Virology, 2016, 90, 10022-10038.	1.5	31
77	Expression and characterization of SARS-CoV-2 spike proteins. Nature Protocols, 2021, 16, 5339-5356.	5.5	31
78	Improved Prefusion Stability, Optimized Codon Usage, and Augmented Virion Packaging Enhance the Immunogenicity of Respiratory Syncytial Virus Fusion Protein in a Vectored-Vaccine Candidate. Journal of Virology, 2017, 91, .	1.5	30
79	Alternative conformations of a major antigenic site on RSV F. PLoS Pathogens, 2019, 15, e1007944.	2.1	29
80	RSV N-nanorings fused to palivizumab-targeted neutralizing epitope as a nanoparticle RSV vaccine. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 411-420.	1.7	28
81	Structure and Characterization of Crimean-Congo Hemorrhagic Fever Virus GP38. Journal of Virology, 2020, 94, .	1.5	28
82	Efficient discovery of SARS-CoV-2-neutralizing antibodies via B cell receptor sequencing and ligand blocking. Nature Biotechnology, 2022, 40, 1270-1275.	9.4	27
83	Crystal Structure and Immunogenicity of the DS-Cav1-Stabilized Fusion Glycoprotein From Respiratory Syncytial Virus Subtype B. Pathogens and Immunity, 2019, 4, 294.	1.4	26
84	Safety and immunogenicity of an inactivated recombinant Newcastle disease virus vaccine expressing SARS-CoV-2 spike: Interim results of a randomised, placebo-controlled, phase 1 trial. EClinicalMedicine, 2022, 45, 101323.	3.2	26
85	Structure-based design of prefusion-stabilized human metapneumovirus fusion proteins. Nature Communications, 2022, 13, 1299.	5.8	26
86	Discovery of a Prefusion Respiratory Syncytial Virus F-Specific Monoclonal Antibody That Provides Greater <i>In Vivo</i> Protection than the Murine Precursor of Palivizumab. Journal of Virology, 2017, 91, .	1.5	24
87	Glycosylation and Serological Reactivity of an Expression-enhanced SARS-CoV-2 Viral Spike Mimetic. Journal of Molecular Biology, 2022, 434, 167332.	2.0	22
88	Crystal Structures of Two Immune Complexes Identify Determinants for Viral Infectivity and Type-Specific Neutralization of Human Papillomavirus. MBio, 2017, 8, .	1.8	20
89	Potent neutralization of SARS-CoV-2 variants of concern by an antibody with an uncommon genetic signature and structural mode of spike recognition. Cell Reports, 2021, 37, 109784.	2.9	20
90	Trimeric SARS-CoV-2 Spike Proteins Produced from CHO Cells in Bioreactors Are High-Quality Antigens. Processes, 2020, 8, 1539.	1.3	18

6

#	Article	IF	CITATIONS
91	Recognition of a highly conserved glycoprotein B epitope by a bivalent antibody neutralizing HCMV at a post-attachment step. PLoS Pathogens, 2020, 16, e1008736.	2.1	17
92	Principles and practical applications of structure-based vaccine design. Current Opinion in Immunology, 2022, 77, 102209.	2.4	17
93	Structural basis of synergistic neutralization of Crimean-Congo hemorrhagic fever virus by human antibodies. Science, 2022, 375, 104-109.	6.0	15
94	Cryo-EM structure of the EBV ribonucleotide reductase BORF2 and mechanism of APOBEC3B inhibition. Science Advances, 2022, 8, eabm2827.	4.7	15
95	Safety and immunogenicity of an egg-based inactivated Newcastle disease virus vaccine expressing SARS-CoV-2 spike: Interim results of a randomized, placebo-controlled, phase 1/2 trial in Vietnam. Vaccine, 2022, 40, 3621-3632.	1.7	15
96	A high-throughput inhibition assay to study MERS-CoV antibody interactions using image cytometry. Journal of Virological Methods, 2019, 265, 77-83.	1.0	12
97	Characterization of a human monoclonal antibody generated from a B-cell specific for a prefusion-stabilized spike protein ofÂMiddle East respiratory syndrome coronavirus. PLoS ONE, 2020, 15, e0232757.	1.1	11
98	Protein engineering responses to the COVID-19 pandemic. Current Opinion in Structural Biology, 2022, 74, 102385.	2.6	11
99	Chimeric <i>Pneumoviridae</i> fusion proteins as immunogens to induce crossâ€neutralizing antibody responses. EMBO Molecular Medicine, 2018, 10, 175-187.	3.3	10
100	Analysis of Viral Spike Protein N-Glycosylation Using Ultraviolet Photodissociation Mass Spectrometry. Analytical Chemistry, 2022, 94, 5776-5784.	3.2	10
101	Five Residues in the Apical Loop of the Respiratory Syncytial Virus Fusion Protein F ₂ Subunit Are Critical for Its Fusion Activity. Journal of Virology, 2018, 92, .	1.5	9
102	Structural basis for antibody binding to adenylate cyclase toxin reveals RTX linkers as neutralization-sensitive epitopes. PLoS Pathogens, 2021, 17, e1009920.	2.1	9
103	A Vulnerable, Membrane-Proximal Site in Human Respiratory Syncytial Virus F Revealed by a Prefusion-Specific Single-Domain Antibody. Journal of Virology, 2021, 95, .	1.5	8
104	Iterative screen optimization maximizes the efficiency of macromolecular crystallization. Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 123-131.	0.4	8
105	Structural basis for HCMV Pentamer recognition by neuropilin 2 and neutralizing antibodies. Science Advances, 2022, 8, eabm2546.	4.7	8
106	Structural basis for ultrapotent antibody-mediated neutralization of human metapneumovirus. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
107	Elicitation of pneumovirus-specific B cell responses by a prefusion-stabilized respiratory syncytial virus F subunit vaccine. Science Translational Medicine, 2022, 14, .	5.8	7
108	Prefusion F–Based Polyanhydride Nanovaccine Induces Both Humoral and Cell-Mediated Immunity Resulting in Long-Lasting Protection against Respiratory Syncytial Virus. Journal of Immunology, 2021, 206, 2122-2134.	0.4	6

#	Article	IF	CITATIONS
109	Structural basis of synergistic neutralization of Crimean-Congo hemorrhagic fever virus by human antibodies. Science, 2021, , eabl6502.	6.0	2
110	Structural Basis of Neutralization by Human Antibodies Targeting Crimean-Congo Hemorrhagic Fever Virus Glycoprotein Gc. SSRN Electronic Journal, 0, , .	0.4	0
111	Title is missing!. , 2020, 16, e1008736.		0
112	Title is missing!. , 2020, 16, e1008736.		0
113	Title is missing!. , 2020, 16, e1008736.		0
114	Title is missing!. , 2020, 16, e1008736.		0