Sanjaya D Senanayake

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9091992/publications.pdf Version: 2024-02-01

		20817	24258
217	14,128	60	110
papers	citations	h-index	g-index
232	232	232	14138
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Effect of operating parameters on H2/CO2 conversion to methanol over Cu-Zn oxide supported on ZrO2 polymorph catalysts: Characterization and kinetics. Chemical Engineering Journal, 2022, 427, 130947.	12.7	29
2	CO2-assisted ethane aromatization over zinc and phosphorous modified ZSM-5 catalysts. Applied Catalysis B: Environmental, 2022, 304, 120956.	20.2	21
3	Utilizing bimetallic catalysts to mitigate coke formation in dry reforming of methane. Journal of Energy Chemistry, 2022, 68, 124-142.	12.9	41
4	Infrared reflection absorption spectroscopy and temperature-programmed desorption studies of CO adsorption on Ni/CeO2(111) thin films: The role of the ceria support. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, 013209.	2.1	0
5	Understanding the Surface Structure and Catalytic Activity of SnO _{<i>x</i>} /Au(111) Inverse Catalysts for CO ₂ and H ₂ Activation. Journal of Physical Chemistry C, 2022, 126, 4862-4870.	3.1	5
6	In Situ Studies of Methane Activation Using Synchrotron-Based Techniques: Guiding the Conversion of C–H Bonds. ACS Catalysis, 2022, 12, 5470-5488.	11.2	8
7	Investigating the Elusive Nature of Atomic O from CO ₂ Dissociation on Pd(111): The Role of Surface Hydrogen. Journal of Physical Chemistry C, 2022, 126, 7870-7879.	3.1	1
8	Tuning Selectivity in the Direct Conversion of Methane to Methanol: Bimetallic Synergistic Effects on the Cleavage of C–H and O–H Bonds over NiCu/CeO ₂ Catalysts. Journal of Physical Chemistry Letters, 2022, 13, 5589-5596.	4.6	6
9	Mechanistic Investigations of Gas-Phase Catalytic Hydrogenation in Metal–Organic Frameworks: Cooperative Activity of the Metal and Linker Sites in Cu _{<i>x</i>} Rh _{3–<i>x</i>} (BTC) ₂ . Journal of Physical Chemistry C, 2022, 126, 11553-11565.	3.1	3
10	The Role of Electron Localization in Covalency and Electrochemical Properties of Lithiumâ€lon Battery Cathode Materials. Advanced Functional Materials, 2021, 31, 2001633.	14.9	21
11	Highly active Ni/CeO2 catalyst for CO2 methanation: Preparation and characterization. Applied Catalysis B: Environmental, 2021, 282, 119581.	20.2	154
12	Modulation of the Effective Metalâ€Support Interactions for the Selectivity of Ceria Supported Noble Metal Nanoclusters in Atmospheric CO ₂ Hydrogenation. ChemCatChem, 2021, 13, 874-881.	3.7	11
13	Methane oxidation activity and nanoscale characterization of Pd/CeO2 catalysts prepared by dry milling Pd acetate and ceria. Applied Catalysis B: Environmental, 2021, 282, 119567.	20.2	61
14	Growth, sintering, and chemical states of Co supported on reducible CeO2(111) thin films: The effects of the metal coverage and the nature of the support. Journal of Chemical Physics, 2021, 154, 044704.	3.0	1
15	Substoichiometric Tuning of the Electronic Properties of Titania. Thin Solid Films, 2021, 717, 138437.	1.8	6
16	Planar defect-driven electrocatalysis of CO ₂ -to-C ₂ H ₄ conversion. Journal of Materials Chemistry A, 2021, 9, 19932-19939.	10.3	15
17	Surface characterization and methane activation on SnO _{<i>x</i>} /Cu ₂ O/Cu(111) inverse oxide/metal catalysts. Physical Chemistry Chemical Physics, 2021, 23, 17186-17196.	2.8	10
18	Dynamic structure of active sites in ceria-supported Pt catalysts for the water gas shift reaction. Nature Communications, 2021, 12, 914.	12.8	103

#	Article	IF	CITATIONS
19	Understanding Methanol Synthesis on Inverse ZnO/CuO _{<i>x</i>} /Cu Catalysts: Stability of CH ₃ O Species and Dynamic Nature of the Surface. Journal of Physical Chemistry C, 2021, 125, 6673-6683.	3.1	21
20	Reaction Pathway for Coke-Free Methane Steam Reforming on a Ni/CeO ₂ Catalyst: Active Sites and the Role of Metal–Support Interactions. ACS Catalysis, 2021, 11, 8327-8337.	11.2	39
21	Adsorption and activation of CO2 on Pt/CeOx/TiO2(110): Role of the Pt-CeOx interface. Surface Science, 2021, 710, 121852.	1.9	5
22	Surface structure of mass-selected niobium oxide nanoclusters on Au(111). Nanotechnology, 2021, 32, 475601.	2.6	7
23	Effect of Ni particle size on the production of renewable methane from CO2 over Ni/CeO2 catalyst. Journal of Energy Chemistry, 2021, 61, 602-611.	12.9	51
24	Metal–Support Interactions and C1 Chemistry: Transforming Pt-CeO ₂ into a Highly Active and Stable Catalyst for the Conversion of Carbon Dioxide and Methane. ACS Catalysis, 2021, 11, 1613-1623.	11.2	39
25	<i>In Situ</i> Studies of Methanol Decomposition Over Cu(111) and Cu ₂ O/Cu(111): Effects of Reactant Pressure, Surface Morphology, and Hot Spots of Active Sites. Journal of Physical Chemistry C, 2021, 125, 558-571.	3.1	18
26	CO ₂ Hydrogenation on ZrO ₂ /Cu(111) Surfaces: Production of Methane and Methanol. Industrial & Engineering Chemistry Research, 2021, 60, 18900-18906.	3.7	16
27	Aliovalent Doping of CeO ₂ Improves the Stability of Atomically Dispersed Pt. ACS Applied Materials & amp; Interfaces, 2021, 13, 52736-52742.	8.0	11
28	Selective Methane Oxidation to Methanol on ZnO/Cu ₂ O/Cu(111) Catalysts: Multiple Site-Dependent Behaviors. Journal of the American Chemical Society, 2021, 143, 19018-19032.	13.7	41
29	Reversing sintering effect of Ni particles on Î ³ -Mo2N via strong metal support interaction. Nature Communications, 2021, 12, 6978.	12.8	58
30	Structure and Chemical State of Cesium on Well-Defined Cu(111) and Cu ₂ O/Cu(111) Surfaces. Journal of Physical Chemistry C, 2020, 124, 3107-3121.	3.1	16
31	Effects of Zr Doping into Ceria for the Dry Reforming of Methane over Ni/CeZrO ₂ Catalysts: In Situ Studies with XRD, XAFS, and AP-XPS. ACS Catalysis, 2020, 10, 3274-3284.	11.2	107
32	Multimodal Characterization of Materials and Decontamination Processes for Chemical Warfare Protection. ACS Applied Materials & amp; Interfaces, 2020, 12, 14721-14738.	8.0	21
33	Breaking Simple Scaling Relations through Metal–Oxide Interactions: Understanding Room-Temperature Activation of Methane on M/CeO ₂ (M = Pt, Ni, or Co) Interfaces. Journal of Physical Chemistry Letters, 2020, 11, 9131-9137.	4.6	27
34	In situ structural study of manganese and iron oxide promoted rhodium catalysts for oxygenate synthesis. Applied Catalysis A: General, 2020, 608, 117845.	4.3	8
35	Low Temperature Activation of Methane on Metal-Oxides and Complex Interfaces: Insights from Surface Science. Accounts of Chemical Research, 2020, 53, 1488-1497.	15.6	66
36	Hydrogenation of CO ₂ to Methanol on a Au ^{δ+} –In ₂ O _{3–<i>x</i>} Catalyst. ACS Catalysis, 2020, 10, 11307-113	$17.^{11.2}$	142

#	Article	IF	CITATIONS
37	Interfacial Active Sites for CO2 Assisted Selective Cleavage of C–C/C–H Bonds in Ethane. CheM, 2020, 6, 2703-2716.	11.7	57
38	Deciphering Dynamic Structural and Mechanistic Complexity in Cu/CeO ₂ /ZSM-5 Catalysts for the Reverse Water-Gas Shift Reaction. ACS Catalysis, 2020, 10, 10216-10228.	11.2	39
39	Direct Identification of Mixed-Metal Centers in Metal–Organic Frameworks: Cu ₃ (BTC) ₂ Transmetalated with Rh ²⁺ Ions. Journal of Physical Chemistry Letters, 2020, 11, 8138-8144.	4.6	16
40	Capture and Decomposition of the Nerve Agent Simulant, DMCP, Using the Zeolitic Imidazolate Framework (ZIF-8). ACS Applied Materials & Interfaces, 2020, 12, 58326-58338.	8.0	22
41	Template-free fabrication of fractal porous Y2O3 monolithic foam and its functional modification by Ni-doping. Science China Materials, 2020, 63, 1842-1847.	6.3	0
42	Insights into the methanol synthesis mechanism via CO2 hydrogenation over Cu-ZnO-ZrO2 catalysts: Effects of surfactant/Cu-Zn-Zr molar ratio. Journal of CO2 Utilization, 2020, 41, 101215.	6.8	51
43	Studies of CO ₂ hydrogenation over cobalt/ceria catalysts with <i>in situ</i> characterization: the effect of cobalt loading and metal–support interactions on the catalytic activity. Catalysis Science and Technology, 2020, 10, 6468-6482.	4.1	23
44	Enhancing ORR Performance of Bimetallic PdAg Electrocatalysts by Designing Interactions between Pd and Ag. ACS Applied Energy Materials, 2020, 3, 2342-2349.	5.1	36
45	Growth and structural studies of In/Au(111) alloys and InOx/Au(111) inverse oxide/metal model catalysts. Journal of Chemical Physics, 2020, 152, 054702.	3.0	6
46	Morphology and chemical behavior of model CsOx/Cu2O/Cu(111) nanocatalysts for methanol synthesis: Reaction with CO2 and H2. Journal of Chemical Physics, 2020, 152, 044701.	3.0	8
47	Establishing structure-sensitivity of ceria reducibility: real-time observations of surface-hydrogen interactions. Journal of Materials Chemistry A, 2020, 8, 5501-5507.	10.3	12
48	Water-promoted interfacial pathways in methane oxidation to methanol on a CeO ₂ -Cu ₂ O catalyst. Science, 2020, 368, 513-517.	12.6	182
49	Preparation and Structural Characterization of ZrO ₂ /CuO <i>_x</i> /Cu(111) Inverse Model Catalysts. Journal of Physical Chemistry C, 2020, 124, 10502-10508.	3.1	12
50	Location and chemical speciation of Cu in ZSM-5 during the water-gas shift reaction. Catalysis Today, 2019, 323, 216-224.	4.4	14
51	Hydroxylation of ZnO/Cu(1 1 1) inverse catalysts under ambient water vapor and the water–gas shift reaction. Journal Physics D: Applied Physics, 2019, 52, 454001.	2.8	8
52	Local Structure and Electronic State of Atomically Dispersed Pt Supported on Nanosized CeO ₂ . ACS Catalysis, 2019, 9, 8738-8748.	11.2	70
53	Anion-mediated electronic effects in reducible oxides: Tuning the valence band of ceria via fluorine doping. Journal of Chemical Physics, 2019, 151, 044701.	3.0	4
54	Exploring Metal–Support Interactions To Immobilize Subnanometer Co Clusters on γ–Mo ₂ N: A Highly Selective and Stable Catalyst for CO ₂ Activation. ACS Catalysis, 2019, 9, 9087-9097.	11.2	50

SANJAYA D SENANAYAKE

#	Article	IF	CITATIONS
55	Selective Catalytic Chemistry at Rhodium(II) Nodes in Bimetallic Metal–Organic Frameworks. Angewandte Chemie, 2019, 131, 16685-16689.	2.0	7
56	Selective Catalytic Chemistry at Rhodium(II) Nodes in Bimetallic Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 16533-16537.	13.8	29
57	Water–Gas Shift Reaction on K/Cu(111) and Cu/K/TiO ₂ (110) Surfaces: Alkali Promotion of Water Dissociation and Production of H ₂ . ACS Catalysis, 2019, 9, 10751-10760.	11.2	38
58	Conversion of CO ₂ on a highly active and stable Cu/FeO _x /CeO ₂ catalyst: tuning catalytic performance by oxide-oxide interactions. Catalysis Science and Technology, 2019, 9, 3735-3742.	4.1	28
59	Correlated Multimodal Approach Reveals Key Details of Nerve-Agent Decomposition by Single-Site Zr-Based Polyoxometalates. Journal of Physical Chemistry Letters, 2019, 10, 2295-2299.	4.6	23
60	Highly Active Ceria-Supported Ru Catalyst for the Dry Reforming of Methane: In Situ Identification of Ru ^{Î+} –Ce ³⁺ Interactions for Enhanced Conversion. ACS Catalysis, 2019, 9, 3349-3359.	11.2	135
61	The behavior of inverse oxide/metal catalysts: CO oxidation and water-gas shift reactions over ZnO/Cu(111) surfaces. Surface Science, 2019, 681, 116-121.	1.9	27
62	Catalysts for the Steam Reforming of Ethanol and Other Alcohols. , 2019, , 133-158.		13
63	Subtle and reversible interactions of ambient pressure H2 with Pt/Cu(111) single-atom alloy surfaces. Surface Science, 2019, 679, 207-213.	1.9	17
64	Modification of CO ₂ Reduction Activity of Nanostructured Silver Electrocatalysts by Surface Halide Anions. ACS Applied Energy Materials, 2019, 2, 102-109.	5.1	46
65	Elucidating the roles of metallic Ni and oxygen vacancies in CO2 hydrogenation over Ni/CeO2 using isotope exchange and in situ measurements. Applied Catalysis B: Environmental, 2019, 245, 360-366.	20.2	57
66	Nucleation, morphology, and structure of subâ€nm thin ceria islands on Rh(111). Surface and Interface Analysis, 2019, 51, 110-114.	1.8	0
67	XPS and NEXAFS study of the reactions of acetic acid and acetaldehyde over UO2(100) thin film. Surface Science, 2019, 680, 107-112.	1.9	10
68	Methane activation and conversion on well-defined metal-oxide Surfaces: <i>in situ</i> studies with synchrotron-based techniques. Catalysis, 2019, , 198-215.	1.0	2
69	<i>In Situ</i> Characterization of Mesoporous Co/CeO ₂ Catalysts for the High-Temperature Water-Gas Shift. Journal of Physical Chemistry C, 2018, 122, 8998-9008.	3.1	28
70	Enhanced Stability of Pt-Cu Single-Atom Alloy Catalysts: In Situ Characterization of the Pt/Cu(111) Surface in an Ambient Pressure of CO. Journal of Physical Chemistry C, 2018, 122, 4488-4495.	3.1	68
71	High Activity of Au/K/TiO ₂ (110) for CO Oxidation: Alkali-Metal-Enhanced Dispersion of Au and Bonding of CO. Journal of Physical Chemistry C, 2018, 122, 4324-4330.	3.1	22
72	A New Class of Metal-Cyclam-Based Zirconium Metal–Organic Frameworks for CO ₂ Adsorption and Chemical Fixation. Journal of the American Chemical Society, 2018, 140, 993-1003.	13.7	176

SANJAYA D SENANAYAKE

#	Article	IF	CITATIONS
73	Enhanced, robust light-driven H ₂ generation by gallium-doped titania nanoparticles. Physical Chemistry Chemical Physics, 2018, 20, 2104-2112.	2.8	23
74	In Situ Elucidation of the Active State of Co–CeO _{<i>x</i>} Catalysts in the Dry Reforming of Methane: The Important Role of the Reducible Oxide Support and Interactions with Cobalt. ACS Catalysis, 2018, 8, 3550-3560.	11.2	80
75	Hydrogenation of CO ₂ on ZnO/Cu(100) and ZnO/Cu(111) Catalysts: Role of Copper Structure and Metal–Oxide Interface in Methanol Synthesis. Journal of Physical Chemistry B, 2018, 122, 794-800.	2.6	129
76	Methanol steam reforming over Ni-CeO2 model and powder catalysts: Pathways to high stability and selectivity for H2/CO2 production. Catalysis Today, 2018, 311, 74-80.	4.4	51
77	Reaction of Methane with MO <i>_x</i> /CeO ₂ (M = Fe, Ni, and Cu) Catalysts: In Situ Studies with Time-Resolved X-ray Diffraction. Journal of Physical Chemistry C, 2018, 122, 28739-28747.	3.1	15
78	Growth, Structure, and Catalytic Properties of ZnO <i>_x</i> Grown on CuO <i>_x</i> /Cu(111) Surfaces. Journal of Physical Chemistry C, 2018, 122, 26554-26562.	3.1	22
79	Structural and chemical state of doped and impregnated mesoporous Ni/CeO2 catalysts for the water-gas shift. Applied Catalysis A: General, 2018, 567, 1-11.	4.3	10
80	Insights into CO2 adsorption and chemical fixation properties of VPI-100 metal–organic frameworks. Journal of Materials Chemistry A, 2018, 6, 22195-22203.	10.3	17
81	In Situ Characterization of Cu/CeO ₂ Nanocatalysts for CO ₂ Hydrogenation: Morphological Effects of Nanostructured Ceria on the Catalytic Activity. Journal of Physical Chemistry C, 2018, 122, 12934-12943.	3.1	145
82	Direct Conversion of Methane to Methanol on Ni-Ceria Surfaces: Metal–Support Interactions and Water-Enabled Catalytic Conversion by Site Blocking. Journal of the American Chemical Society, 2018, 140, 7681-7687.	13.7	141
83	<i>In Situ</i> Formation of FeRh Nanoalloys for Oxygenate Synthesis. ACS Catalysis, 2018, 8, 7279-7286.	11.2	23
84	Imaging the ordering of a weakly adsorbed two-dimensional condensate: ambient-pressure microscopy and spectroscopy of CO ₂ molecules on rutile TiO ₂ (110). Physical Chemistry Chemical Physics, 2018, 20, 13122-13126.	2.8	9
85	High selectivity of CO ₂ hydrogenation to CO by controlling the valence state of nickel using perovskite. Chemical Communications, 2018, 54, 7354-7357.	4.1	49
86	Waterâ€Gasâ€Shift over Metalâ€Free Nanocrystalline Ceria: An Experimental and Theoretical Study. ChemCatChem, 2017, 9, 1373-1377.	3.7	13
87	Ceria-based model catalysts: fundamental studies on the importance of the metal–ceria interface in CO oxidation, the water–gas shift, CO ₂ hydrogenation, and methane and alcohol reforming. Chemical Society Reviews, 2017, 46, 1824-1841.	38.1	311
88	Importance of Low Dimensional CeOx Nanostructures in Pt/CeOx–TiO2 Catalysts for the Water–Gas Shift Reaction. Journal of Physical Chemistry C, 2017, 121, 6635-6642.	3.1	17
89	Atomic-Level Structural Dynamics of Polyoxoniobates during DMMP Decomposition. Scientific Reports, 2017, 7, 773.	3.3	24
90	Interfaces in heterogeneous catalytic reactions: Ambient pressure XPS as a tool to unravel surface chemistry. Journal of Electron Spectroscopy and Related Phenomena, 2017, 221, 28-43.	1.7	41

#	Article	IF	CITATIONS
91	Cu supported on mesoporous ceria: water gas shift activity at low Cu loadings through metal–support interactions. Physical Chemistry Chemical Physics, 2017, 19, 17708-17717.	2.8	25
92	Exploiting micro-scale structural and chemical observations in real time for understanding chemical conversion: LEEM/PEEM studies over CeOx–Cu(111). Ultramicroscopy, 2017, 183, 84-88.	1.9	4
93	New In-Situ and Operando Facilities for Catalysis Science at NSLS-II: The Deployment of Real-Time, Chemical, and Structure-Sensitive X-ray Probes. Synchrotron Radiation News, 2017, 30, 30-37.	0.8	28
94	In Situ Probes of Capture and Decomposition of Chemical Warfare Agent Simulants by Zr-Based Metal Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 599-602.	13.7	169
95	Inverse Catalysts for CO Oxidation: Enhanced Oxide–Metal Interactions in MgO/Au(111), CeO ₂ /Au(111), and TiO ₂ /Au(111). ACS Sustainable Chemistry and Engineering, 2017, 5, 10783-10791.	6.7	32
96	Inâ€Situ Investigation of Methane Dry Reforming on Metal/Ceria(111) Surfaces: Metal–Support Interactions and Câ^'H Bond Activation at Low Temperature. Angewandte Chemie, 2017, 129, 13221-13226.	2.0	9
97	Inâ€Situ Investigation of Methane Dry Reforming on Metal/Ceria(111) Surfaces: Metal–Support Interactions and Câ^'H Bond Activation at Low Temperature. Angewandte Chemie - International Edition, 2017, 56, 13041-13046.	13.8	120
98	Rotating Disk Slurry Au Electrodeposition at Unsupported Carbon Vulcan XC-72 and Ce3+ Impregnation for Ethanol Oxidation in Alkaline Media. Electrocatalysis, 2017, 8, 87-94.	3.0	4
99	Dry Reforming of Methane on a Highlyâ€Active Ni eO ₂ Catalyst: Effects of Metalâ€&upport Interactions on Câ~'H Bond Breaking. Angewandte Chemie - International Edition, 2016, 55, 7455-7459.	13.8	276
100	Dry Reforming of Methane on a Highlyâ€Active Niâ€CeO ₂ Catalyst: Effects of Metalâ€&upport Interactions on Câ^'H Bond Breaking. Angewandte Chemie, 2016, 128, 7581-7585.	2.0	35
101	Hydrogen from oxygenated molecules. Applied Catalysis A: General, 2016, 518, 1.	4.3	0
102	Three-dimensional ruthenium-doped TiO ₂ sea urchins for enhanced visible-light-responsive H ₂ production. Physical Chemistry Chemical Physics, 2016, 18, 15972-15979.	2.8	56
103	Water–gas shift reaction over gold nanoparticles dispersed on nanostructured CeOx–TiO2(110) surfaces: Effects of high ceria coverage. Surface Science, 2016, 650, 34-39.	1.9	13
104	Ambient pressure XPS and IRRAS investigation of ethanol steam reforming on Ni–CeO ₂ (111) catalysts: an in situ study of C–C and O–H bond scission. Physical Chemistry Chemical Physics, 2016, 18, 16621-16628.	2.8	83
105	Growth and characterization of epitaxially stabilized ceria(001) nanostructures on Ru(0001). Nanoscale, 2016, 8, 10849-10856.	5.6	22
106	Low-Temperature Conversion of Methane to Methanol on CeO _{<i>x</i>} /Cu ₂ O Catalysts: Water Controlled Activation of the C–H Bond. Journal of the American Chemical Society, 2016, 138, 13810-13813.	13.7	125
107	Potassium and Water Coadsorption on TiO ₂ (110): OH-Induced Anchoring of Potassium and the Generation of Single-Site Catalysts. Journal of Physical Chemistry Letters, 2016, 7, 3866-3872.	4.6	14
108	Room-Temperature Activation of Methane and Dry Re-forming with CO ₂ on Ni-CeO ₂ (111) Surfaces: Effect of Ce ³⁺ Sites and Metal–Support Interactions on C–H Bond Cleavage. ACS Catalysis, 2016, 6, 8184-8191.	11.2	146

#	Article	IF	CITATIONS
109	Inverse Oxide/Metal Catalysts in Fundamental Studies and Practical Applications: A Perspective of Recent Developments. Journal of Physical Chemistry Letters, 2016, 7, 2627-2639.	4.6	120
110	In situ growth, structure, and real-time chemical reactivity of well-defined CeOx-Ru(0001) model surfaces. Applied Catalysis B: Environmental, 2016, 197, 286-298.	20.2	17
111	Interfacial Cu+ promoted surface reactivity: Carbon monoxide oxidation reaction over polycrystalline copper–titania catalysts. Surface Science, 2016, 652, 206-212.	1.9	24
112	How to stabilize highly active Cu+ cations in a mixed-oxide catalyst. Catalysis Today, 2016, 263, 4-10.	4.4	11
113	Unraveling the Hydrogenation of TiO ₂ and Graphene Oxide/TiO ₂ Composites in Real Time by in Situ Synchrotron X-ray Powder Diffraction and Pair Distribution Function Analysis. Journal of Physical Chemistry C, 2016, 120, 3472-3482.	3.1	16
114	Au and Pt nanoparticle supported catalysts tailored for H2 production: From models to powder catalysts. Applied Catalysis A: General, 2016, 518, 18-47.	4.3	30
115	Visible Light-Driven H ₂ Production over Highly Dispersed Ruthenia on Rutile TiO ₂ Nanorods. ACS Catalysis, 2016, 6, 407-417.	11.2	71
116	Enhancing the reactivity of gold: Nanostructured Au(111) adsorbs CO. Surface Science, 2016, 650, 17-23.	1.9	7
117	Controlling Heteroepitaxy by Oxygen Chemical Potential: Exclusive Growth of (100) Oriented Ceria Nanostructures on Cu(111). Journal of Physical Chemistry C, 2016, 120, 4895-4901.	3.1	20
118	The Effect of the Surface Composition of Ru-Pt Bimetallic Catalysts for Methanol Oxidation. Electrochimica Acta, 2016, 195, 106-111.	5.2	37
119	Elucidating the interaction between Ni and CeOx in ethanol steam reforming catalysts: A perspective of recent studies over model and powder systems. Applied Catalysis B: Environmental, 2016, 197, 184-197.	20.2	38
120	Hydrogenation of CO ₂ to Methanol on CeO _{<i>x</i>} /Cu(111) and ZnO/Cu(111) Catalysts: Role of the Metal–Oxide Interface and Importance of Ce ³⁺ Sites. Journal of Physical Chemistry C, 2016, 120, 1778-1784.	3.1	156
121	Frontispiece: Direct Epoxidation of Propylene over Stabilized Cu+Surface Sites on Titanium-Modified Cu2O. Angewandte Chemie - International Edition, 2015, 54, n/a-n/a.	13.8	1
122	Direct Epoxidation of Propylene over Stabilized Cu ⁺ Surface Sites on Titaniumâ€Modified Cu ₂ O. Angewandte Chemie - International Edition, 2015, 54, 11946-11951.	13.8	62
123	Unraveling the Dynamic Nanoscale Reducibility (Ce ⁴⁺ → Ce ³⁺) of CeO <i>_x</i> –Ru in Hydrogen Activation. Advanced Materials Interfaces, 2015, 2, 1500314.	3.7	42
124	Frontispiz: Direct Epoxidation of Propylene over Stabilized Cu+Surface Sites on Titanium-Modified Cu2O. Angewandte Chemie, 2015, 127, n/a-n/a.	2.0	0
125	Catalytic conversion of biomass pyrolysis vapors into hydrocarbon fuel precursors. Green Chemistry, 2015, 17, 2362-2368.	9.0	76
126	The effect of Fe–Rh alloying on CO hydrogenation to C2+ oxygenates. Journal of Catalysis, 2015, 329, 87-94.	6.2	38

#	Article	IF	CITATIONS
127	Hydrogen: Unraveling the Dynamic Nanoscale Reducibility (Ce4+→ Ce3+) of CeOx-Ru in Hydrogen Activation (Adv. Mater. Interfaces 18/2015). Advanced Materials Interfaces, 2015, 2, n/a-n/a.	3.7	1
128	Hierarchical Heterogeneity at the CeO _{<i>x</i>} –TiO ₂ Interface: Electronic and Geometric Structural Influence on the Photocatalytic Activity of Oxide on Oxide Nanostructures. Journal of Physical Chemistry C, 2015, 119, 2669-2679.	3.1	52
129	In Situ and Theoretical Studies for the Dissociation of Water on an Active Ni/CeO ₂ Catalyst: Importance of Strong Metal–Support Interactions for the Cleavage of O–H Bonds. Angewandte Chemie - International Edition, 2015, 54, 3917-3921.	13.8	205
130	Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: structure–activity relationship. Nanoscale, 2015, 7, 4920-4928.	5.6	47
131	The influence of nano-architectured CeO supports in RhPd/CeO2 for the catalytic ethanol steam reforming reaction. Catalysis Today, 2015, 253, 99-105.	4.4	44
132	Non-equilibrium oxidation states of zirconium during early stages of metal oxidation. Applied Physics Letters, 2015, 106, .	3.3	42
133	Effect of Chloride Anions on the Synthesis and Enhanced Catalytic Activity of Silver Nanocoral Electrodes for CO ₂ Electroreduction. ACS Catalysis, 2015, 5, 5349-5356.	11.2	310
134	Low Pressure CO ₂ Hydrogenation to Methanol over Gold Nanoparticles Activated on a CeO _{<i>x</i>} /TiO ₂ Interface. Journal of the American Chemical Society, 2015, 137, 10104-10107.	13.7	200
135	Reduction of Nano-Cu ₂ O: Crystallite Size Dependent and the Effect of Nano-Ceria Support. Journal of Physical Chemistry C, 2015, 119, 17667-17672.	3.1	23
136	Pulse Studies to Decipher the Role of Surface Morphology in CuO/CeO2 Nanocatalysts for the Water Gas Shift Reaction. Catalysis Letters, 2015, 145, 808-815.	2.6	9
137	Intermediates Arising from the Water–Gas Shift Reaction over Cu Surfaces: From UHV to Near Atmospheric Pressures. Topics in Catalysis, 2015, 58, 271-280.	2.8	15
138	Hydrogenation of CO ₂ to Methanol: Importance of Metal–Oxide and Metal–Carbide Interfaces in the Activation of CO ₂ . ACS Catalysis, 2015, 5, 6696-6706.	11.2	374
139	Surface Reactions of Ethanol over UO2(100) Thin Film. Journal of Physical Chemistry C, 2015, 119, 24895-24901.	3.1	3
140	Cerium oxide as a promoter for the electro-oxidation reaction of ethanol: in situ XAFS characterization of the Pt nanoparticles supported on CeO ₂ nanoparticles and nanorods. Physical Chemistry Chemical Physics, 2015, 17, 32251-32256.	2.8	6
141	Striving Toward Noble-Metal-Free Photocatalytic Water Splitting: The Hydrogenated-Graphene–TiO ₂ Prototype. Chemistry of Materials, 2015, 27, 6282-6296.	6.7	81
142	Mechanistic Insights of Ethanol Steam Reforming over Ni–CeO _{<i>x</i>} (111): The Importance of Hydroxyl Groups for Suppressing Coke Formation. Journal of Physical Chemistry C, 2015, 119, 18248-18256.	3.1	37
143	Thermal stability in the blended lithium manganese oxide – Lithium nickel cobalt manganese oxide cathode materials: An in situ time-resolved X-Ray diffraction and mass spectroscopy study. Journal of Power Sources, 2015, 277, 193-197.	7.8	33
144	Superior performance of Ni–W–Ce mixed-metal oxide catalysts for ethanol steam reforming: Synergistic effects of W- and Ni-dopants. Journal of Catalysis, 2015, 321, 90-99.	6.2	47

#	Article	IF	CITATIONS
145	Isolation and characterization of formates on CeO –Cu O/Cu(1 1 1). Catalysis Today, 2015, 240, 190-200.	4.4	11
146	Structural Changes and Thermal Stability of Charged LiNi _{<i>x</i>} Mn _{<i>y</i>} Co _{<i>z</i>} O ₂ Cathode Materials Studied by Combined <i>In Situ</i> Time-Resolved XRD and Mass Spectroscopy. ACS Applied Materials & amp; Interfaces, 2014, 6, 22594-22601.	8.0	731
147	EDTA-Ce(III) Modified Pt Vulcan XC-72 Catalyst Synthesis for Methanol Oxidation in Acid Solution. Electrocatalysis, 2014, 5, 50-61.	3.0	7
148	The Activation of Gold and the Water–Gas Shift Reaction: Insights from Studies with Model Catalysts. Accounts of Chemical Research, 2014, 47, 773-782.	15.6	87
149	Unravelling the Structure of Magnus' Pink Salt. Journal of the American Chemical Society, 2014, 136, 1333-1351.	13.7	65
150	Structure and special chemical reactivity of interface-stabilized cerium oxide nanolayers on TiO ₂ (110). Nanoscale, 2014, 6, 800-810.	5.6	18
151	The Unique Properties of the Oxide-Metal Interface: Reaction of Ethanol on an Inverse Model CeO _{<i>x</i>} –Au(111) Catalyst. Journal of Physical Chemistry C, 2014, 118, 25057-25064.	3.1	22
152	Morphological effects of the nanostructured ceria support on the activity and stability of CuO/CeO ₂ catalysts for the water-gas shift reaction. Physical Chemistry Chemical Physics, 2014, 16, 17183-17195.	2.8	143
153	Monoethanolamine Adsorption on TiO2(110): Bonding, Structure, and Implications for Use as a Model Solid-Supported CO2 Capture Material. Journal of Physical Chemistry C, 2014, 118, 1576-1586.	3.1	15
154	Water-Gas Shift Reaction on Ni–W–Ce Catalysts: Catalytic Activity and Structural Characterization. Journal of Physical Chemistry C, 2014, 118, 2528-2538.	3.1	48
155	Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO ₂ . Science, 2014, 345, 546-550.	12.6	1,114
156	Unraveling the Dynamic Nature of a CuO/CeO ₂ Catalyst for CO Oxidation in <i>Operando</i> : A Combined Study of XANES (Fluorescence) and DRIFTS. ACS Catalysis, 2014, 4, 1650-1661.	11.2	128
157	Stabilization of Catalytically Active Cu ⁺ Surface Sites on Titanium–Copper Mixedâ€Oxide Films. Angewandte Chemie - International Edition, 2014, 53, 5336-5340.	13.8	51
158	Nature of the Mixed-Oxide Interface in Ceria–Titania Catalysts: Clusters, Chains, and Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 14463-14471.	3.1	73
159	In situ/operando studies for the production of hydrogen through the water-gas shift on metal oxide catalysts. Physical Chemistry Chemical Physics, 2013, 15, 12004.	2.8	80
160	Assisted deprotonation of formic acid on Cu(111) and self-assembly of 1D chains. Physical Chemistry Chemical Physics, 2013, 15, 12291.	2.8	34
161	Importance of the Metal–Oxide Interface in Catalysis: In Situ Studies of the Water–Gas Shift Reaction by Ambientâ€Pressure Xâ€ray Photoelectron Spectroscopy. Angewandte Chemie - International Edition, 2013, 52, 5101-5105.	13.8	280
162	Unique Properties of Ceria Nanoparticles Supported on Metals: Novel Inverse Ceria/Copper Catalysts for CO Oxidation and the Water-Gas Shift Reaction. Accounts of Chemical Research, 2013, 46, 1702-1711.	15.6	198

#	Article	IF	CITATIONS
163	Characterization of Metal-Oxide Catalysts in Operando Conditions by Combining X-ray Absorption and Raman Spectroscopies in the Same Experiment. Topics in Catalysis, 2013, 56, 896-904.	2.8	16
164	Probing adsorption sites for CO on ceria. Physical Chemistry Chemical Physics, 2013, 15, 15856.	2.8	30
165	Fundamental Studies of Well-Defined Surfaces of Mixed-Metal Oxides: Special Properties of MO _x /TiO ₂ (110) {M = V, Ru, Ce, or W}. Chemical Reviews, 2013, 113, 4373-4390.	47.7	77
166	Steam Reforming of Ethanol on Ni/CeO ₂ : Reaction Pathway and Interaction between Ni and the CeO ₂ Support. ACS Catalysis, 2013, 3, 975-984.	11.2	210
167	Ethanol Photoreaction on RuO _{<i>x</i>} /Ru-Modified TiO ₂ (110). Journal of Physical Chemistry C, 2013, 117, 11149-11158.	3.1	34
168	Growth mode and oxidation state analysis of individual cerium oxide islands on Ru(0001). Ultramicroscopy, 2013, 130, 87-93.	1.9	24
169	Pseudocapacitive Hausmannite Nanoparticles with (101) Facets: Synthesis, Characterization, and Chargeâ€Transfer Mechanism. ChemSusChem, 2013, 6, 1983-1992.	6.8	22
170	Growth and Morphology of Ceria on Ruthenium (0001). Journal of Physical Chemistry C, 2013, 117, 221-232.	3.1	52
171	<i>In Situ</i> Imaging of Cu ₂ O under Reducing Conditions: Formation of Metallic Fronts by Mass Transfer. Journal of the American Chemical Society, 2013, 135, 16781-16784.	13.7	74
172	Electronic Metal–Support Interactions and the Production of Hydrogen Through the Water-Gas Shift Reaction and Ethanol Steam Reforming: Fundamental Studies with Well-Defined Model Catalysts. Topics in Catalysis, 2013, 56, 1488-1498.	2.8	57
173	Why Substitution Enhances the Reactivity of LiFePO ₄ . Chemistry of Materials, 2013, 25, 85-89.	6.7	63
174	Storage of Potassium Ions in Layered Vanadium Pentoxide Nanofiber Electrodes for Aqueous Pseudocapacitors. ChemSusChem, 2013, 6, 2231-2235.	6.8	16
175	Origin of chemical contrast in low-energy electron reflectivity of correlated multivalent oxides: The case of ceria. Physical Review B, 2013, 88, .	3.2	22
176	Vulcan/Pt/Ce Catalysts Prepared by Impregnation Using EDTA for Direct Methanol Fuel Cell, Direct Ethanol Fuel Cell, and Polymer Electrolyte Membrane Fuel Cell. Smart Grid and Renewable Energy, 2013, 04, 1-9.	1.1	10
177	A New Type of Strong Metal–Support Interaction and the Production of H ₂ through the Transformation of Water on Pt/CeO ₂ (111) and Pt/CeO _{<i>x</i>} /TiO ₂ (110) Catalysts. Journal of the American Chemical Society, 2012. 134. 8968-8974.	13.7	682
178	Competing pathways for isocyanate loss from Cu(001) with co-adsorbed oxygen. Journal of Catalysis, 2012, 295, 269-273.	6.2	3
179	Special Chemical Properties of RuO _{<i>x</i>} Nanowires in RuO _{<i>x</i>} /TiO ₂ (110): Dissociation of Water and Hydrogen Production. Journal of Physical Chemistry C, 2012, 116, 4767-4773.	3.1	25
180	Nanopattering in CeO _{<i>x</i>} /Cu(111): A New Type of Surface Reconstruction and Enhancement of Catalytic Activity. Journal of Physical Chemistry Letters, 2012, 3, 839-843.	4.6	38

#	Article	IF	CITATIONS
181	Exploring the Structural and Electronic Properties of Pt/Ceria-Modified TiO ₂ and Its Photocatalytic Activity for Water Splitting under Visible Light. Journal of Physical Chemistry C, 2012, 116, 14062-14070.	3.1	69
182	In situ studies of CeO2-supported Pt, Ru, and Pt–Ru alloy catalysts for the water–gas shift reaction: Active phases and reaction intermediates. Journal of Catalysis, 2012, 291, 117-126.	6.2	133
183	In situ oxidation of ultrathin silver films on Ni(111). IBM Journal of Research and Development, 2011, 55, 8:1-8:7.	3.1	2
184	Interactions of oxygen and ethylene with submonolayer Ag films supported on Ni(111). Physical Chemistry Chemical Physics, 2011, 13, 11034.	2.8	10
185	Water–Gas Shift and CO Methanation Reactions over Ni–CeO2(111) Catalysts. Topics in Catalysis, 2011, 54, 34-41.	2.8	109
186	Determining the Behavior of RuO _{<i>x</i>} Nanoparticles in Mixedâ€Metal Oxides: Structural and Catalytic Properties of RuO ₂ /TiO ₂ (110) Surfaces. Angewandte Chemie - International Edition, 2011, 50, 10198-10202.	13.8	48
187	Probing the reaction intermediates for the water–gas shift over inverse CeOx/Au(111) catalysts. Journal of Catalysis, 2010, 271, 392-400.	6.2	110
188	High Activity of Ce _{1â^'<i>x</i>} Ni _{<i>x</i>} O _{2â^'<i>y</i>} for H ₂ Production through Ethanol Steam Reforming: Tuning Catalytic Performance through Metal–Oxide Interactions. Angewandte Chemie - International Edition, 2010, 49, 9680-9684.	13.8	108
189	Dimethyl methylphosphonate decomposition on fully oxidized and partially reduced ceria thin films. Surface Science, 2010, 604, 574-587.	1.9	69
190	Gold, Copper, and Platinum Nanoparticles Dispersed on CeO _{<i>x</i>} /TiO ₂ (110) Surfaces: High Water-Gas Shift Activity and the Nature of the Mixed-Metal Oxide at the Nanometer Level. Journal of the American Chemical Society, 2010, 132, 356-363.	13.7	247
191	Ultrathin silver films on Ni(111). Physical Review B, 2010, 82, .	3.2	20
192	Reaction of Formic Acid over Amorphous Manganese Oxide Catalytic Systems: An In Situ Study. Journal of Physical Chemistry C, 2010, 114, 20000-20006.	3.1	46
193	Implementation of New TPD Analysis Techniques in the Evaluation of Second Order Desorption Kinetics of Cyanogen from Cu(001). Langmuir, 2010, 26, 18742-18749.	3.5	5
194	Adsorption and Reaction of C ₁ â^'C ₃ Alcohols over CeO _{<i>X</i>} (111) Thin Films. Journal of Physical Chemistry C, 2010, 114, 17112-17119.	3.1	91
195	Waterâ€Gas Shift Reaction on a Highly Active Inverse CeO _{<i>x</i>} /Cu(111) Catalyst: Unique Role of Ceria Nanoparticles. Angewandte Chemie - International Edition, 2009, 48, 8047-8050.	13.8	262
196	Adsorption and Reaction of Acetone over CeOx(111) Thin Films. Journal of Physical Chemistry C, 2009, 113, 6208-6214.	3.1	46
197	Interaction of CO with OH on Au(111): HCOO, CO ₃ , and HOCO as Key Intermediates in the Water-Gas Shift Reaction. Journal of Physical Chemistry C, 2009, 113, 19536-19544.	3.1	93
198	A Phenomenological Study of the Metal–Oxide Interface: The Role of Catalysis in Hydrogen Production from Renewable Resources. ChemSusChem, 2008, 1, 905-910.	6.8	85

SANJAYA D SENANAYAKE

#	Article	IF	CITATIONS
199	Infrared reflectance and photoemission spectroscopy studies across the phase transition boundary in thin film vanadium dioxide. Journal of Physics Condensed Matter, 2008, 20, 465204.	1.8	43
200	Soft x-ray photoemission of clean and sulfur-covered polar ZnO surfaces: A view of the stabilization of polar oxide surfaces. Physical Review B, 2008, 78, .	3.2	32
201	Redox Pathways for HCOOH Decomposition over CeO ₂ Surfaces. Journal of Physical Chemistry C, 2008, 112, 9744-9752.	3.1	111
202	Correlation between metal-insulator transition characteristics and electronic structure changes in vanadium oxide thin films. Physical Review B, 2008, 77, .	3.2	97
203	X-ray absorption spectroscopy of vanadium dioxide thin films across the phase-transition boundary. Physical Review B, 2007, 75, .	3.2	79
204	Probing Surface Oxidation of Reduced Uranium Dioxide Thin Film Using Synchrotron Radiation. Journal of Physical Chemistry C, 2007, 111, 7963-7970.	3.1	38
205	The reactions of acetone with the surfaces of uranium dioxide single crystal and thin film. Surface Science, 2007, 601, 5690-5700.	1.9	14
206	The reactions of water vapour on the surfaces of stoichiometric and reduced uranium dioxide: A high resolution XPS study. Catalysis Today, 2007, 120, 151-157.	4.4	62
207	The reaction of carbon monoxide with palladium supported on cerium oxide thin films. Surface Science, 2007, 601, 3215-3223.	1.9	36
208	UO2 (111) Single Crystal: Comparison of Stoichiometric and Defective Surfaces by XPS. Surface Science Spectra, 2006, 13, 72-80.	1.3	10
209	Solid-state NMR study of 15N labelled polyaniline upon reaction with DPPH. Polymer, 2006, 47, 1166-1171.	3.8	28
210	The reaction of water on polycrystalline UO2: Pathways to surface and bulk oxidation. Journal of Nuclear Materials, 2005, 342, 179-187.	2.7	67
211	Carbon monoxide reaction with UO2(111) single crystal surfaces: A theoretical and experimental study. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2005, 23, 1078-1084.	2.1	18
212	Coupling of Carbon Monoxide Molecules over Oxygen-Defected UO2(111) Single Crystal and Thin Film Surfaces. Langmuir, 2005, 21, 11141-11145.	3.5	21
213	Carbon coupling on titanium oxide with surface defects. Surface Science, 2004, 562, L231-L237.	1.9	16
214	Water reactions over stoichiometric and reduced UO2(111) single crystal surfaces. Surface Science, 2004, 563, 135-144.	1.9	55
215	The reactions of formaldehyde over the surfaces of uranium oxides.A comparative study between polycrystalline and single crystal materials. Catalysis Today, 2003, 85, 311-320.	4.4	26
216	78 Probing into the surface chemistry of uranium oxides: The reactions of formic acid on UO2 (111) single crystal and polycrystalline surfaces. Studies in Surface Science and Catalysis, 2003, , 363-366.	1.5	2

#	Article	IF	CITATIONS
217	Lithium-Ion Battery Materials as Tunable, "Redox Non-Innocent―Catalyst Supports. ACS Catalysis, 0, , 7233-7242.	11.2	6