
Francesco Carbone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9091913/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of equivalence ratio and temperature on soot formation in partially premixed counterflow flames. Combustion and Flame, 2022, 242, 112088.	5.2	4
2	The size-mobility relationship of ions, aerosols, and other charged particle matter Journal of Aerosol Science, 2021, 151, 105659.	3.8	22
3	Small aromatic hydrocarbons control the onset of soot nucleation. Combustion and Flame, 2021, 223, 398-406.	5.2	38
4	Spatially resolved measurements of soot and gaseous precursors in ethylene counterflow diffusion flames up to 32Âatm. Proceedings of the Combustion Institute, 2021, 38, 2517-2524.	3.9	5
5	Detection of weakly bound clusters in incipiently sooting flames via ion seeded dilution and collision charging for (APi-TOF) mass spectrometry analysis. Fuel, 2021, 289, 119820.	6.4	5
6	PAHs controlling soot nucleation in 0.101—0.811MPa ethylene counterflow diffusion flames. Combustion and Flame, 2021, 227, 384-395.	5.2	16
7	Pressure and temperature dependence of soot in highly controlled counterflow ethylene diffusion flames. Proceedings of the Combustion Institute, 2019, 37, 2057-2064.	3.9	22
8	Exploratory analysis of a sooting premixed flame via on-line high resolution (APi–TOF) mass spectrometry. Proceedings of the Combustion Institute, 2019, 37, 919-926.	3.9	21
9	Effect of n-dodecane decomposition on its fundamental flame properties. Combustion and Flame, 2018, 190, 65-73.	5.2	23
10	Effect of temperature on soot inception in highly controlled counterflow ethylene diffusion flames. Combustion and Flame, 2018, 192, 283-294.	5.2	46
11	Probing gas-to-particle transition in a moderately sooting atmospheric pressure ethylene/air laminar premixed flame. Part I: gas phase and soot ensemble characterization. Combustion and Flame, 2017, 181, 315-328.	5.2	24
12	Probing gas-to-particle transition in a moderately sooting atmospheric pressure ethylene/air laminar premixed flame. Part II: Molecular clusters and nascent soot particle size distributions. Combustion and Flame, 2017, 181, 329-341.	5.2	24
13	Comparative behavior of piloted turbulent premixed jet flames of C 1 C 8 hydrocarbons. Combustion and Flame, 2017, 180, 88-101.	5.2	21
14	Experimental and numerical studies of fuel and hydrodynamic effects on piloted turbulent premixed jet flames. Proceedings of the Combustion Institute, 2017, 36, 1877-1884.	3.9	13
15	Pressure effects on incipiently sooting partially premixed counterflow flames of ethylene. Proceedings of the Combustion Institute, 2017, 36, 1395-1402.	3.9	35
16	The Whirl Cookstove: A Novel Development for Clean Biomass Burning. Combustion Science and Technology, 2016, 188, 594-610.	2.3	6
17	Challenges of measuring nascent soot in flames as evidenced by high-resolution differential mobility analysis. Aerosol Science and Technology, 2016, 50, 740-757.	3.1	43
18	Challenges and artifacts of probing high-pressure counterflow laminar diffusion flames. Proceedings of the Combustion Institute, 2015, 35, 1871-1878.	3.9	31

FrancescoÂCarbone

#	Article	IF	CITATIONS
19	Structure of incipiently sooting partially premixed ethylene counterflow flames. Combustion and Flame, 2015, 162, 4138-4148.	5.2	39
20	Chemical interactions between 1,2,4-trimethylbenzene and n -decane in doped counterflow gaseous diffusion flames. Proceedings of the Combustion Institute, 2015, 35, 761-769.	3.9	16
21	Experimental study on the structure of opposed flow gaseous diffusion flames doped with n-decane. Combustion and Flame, 2014, 161, 453-464.	5.2	10
22	Chemical effects of 1,2,4-trimethyl benzene addition in counterflow gaseous diffusion flames. Proceedings of the Combustion Institute, 2013, 34, 1025-1033.	3.9	10
23	Metal oxide nanoparticles formed from solution droplets under high heating rate. Experimental Thermal and Fluid Science, 2012, 43, 23-31.	2.7	1
24	The structure of toluene-doped counterflow gaseous diffusion flames. Combustion and Flame, 2012, 159, 3040-3055.	5.2	33
25	A flat premixed flame reactor to study nano-ash formation during high temperature pulverized coal combustion and oxygen firing. Fuel, 2011, 90, 369-375.	6.4	12
26	Size Distribution Functions of Ultrafine Ashes From Pulverized Coal Combustion. Combustion Science and Technology, 2010, 182, 668-682.	2.3	5
27	Multimodal ultrafine particles from pulverized coal combustion in a laboratory scale reactor. Combustion and Flame, 2010, 157, 1290-1297.	5.2	12
28	Factors Influencing Ultrafine Particulate Matter (PM _{0.1}) Formation under Pulverized Coal Combustion and Oxyfiring Conditions. Energy & Fuels, 2010, 24, 6248-6256.	5.1	24
29	Ultrafine Particles Formed by Heating Droplets of Simulated Ash Containing Metals. Environmental Engineering Science, 2008, 25, 1379-1388.	1.6	10