List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9090546/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Operating Mechanism and Resistive Switching Characteristics of Two- and Three-Terminal Atomic Switches Using a Thin Metal Oxide Layer. Kluwer International Series in Electronic Materials: Science and Technology, 2022, , 209-234.	0.5	1
2	A Variety of Functional Devices Realized by Ionic Nanoarchitectonics, Complementing Electronics Components. Advanced Electronic Materials, 2022, 8, 2100645.	5.1	22
3	Effects of Oxygen Partial Pressure and Substrate Temperature on the Structure and Morphology of Sc and Y Co-Doped ZrO2 Solid Electrolyte Thin Films Prepared via Pulsed Laser Deposition. Materials, 2022, 15, 410.	2.9	3
4	A floating gate negative capacitance MoS ₂ phototransistor with high photosensitivity. Nanoscale, 2022, 14, 2013-2022.	5.6	11
5	Solid state ionics for the development of artificial intelligence components. Japanese Journal of Applied Physics, 2022, 61, SM0803.	1.5	6
6	Atomic scale switches based on solid state ionics. Advances in Physics: X, 2022, 7, .	4.1	3
7	Quantum Conductance in Memristive Devices: Fundamentals, Developments, and Applications. Advanced Materials, 2022, 34, e2201248.	21.0	31
8	In situ manipulation of perpendicular magnetic anisotropy in half-metallic NiCo ₂ O ₄ thin film by proton insertion. Japanese Journal of Applied Physics, 2022, 61, SM1002.	1.5	6
9	Substrate effect on the neuromorphic function of nanoionics-based transistors fabricated using WO3 thin film. Solid State Ionics, 2021, 364, 115638.	2.7	4
10	The electric double layer effect and its strong suppression at Li+ solid electrolyte/hydrogenated diamond interfaces. Communications Chemistry, 2021, 4, .	4.5	15
11	Neuromorphic System for Edge Information Encoding: Emulating Retinal Center-Surround Antagonism by Li-Ion-Mediated Highly Interactive Devices. Nano Letters, 2021, 21, 7938-7945.	9.1	14
12	Impact of moisture absorption on the resistive switching characteristics of a polyethylene oxide-based atomic switch. Journal of Materials Chemistry C, 2021, 9, 11198-11206.	5.5	6
13	Fabrication of graphene/MoS2 alternately stacked structure for enhanced lithium storage. Materials Chemistry and Physics, 2020, 239, 121987.	4.0	11
14	Room-Temperature Manipulation of Magnetization Angle, Achieved with an All-Solid-State Redox Device. ACS Nano, 2020, 14, 16065-16072.	14.6	11
15	A Voltage-Controlled Oscillator Using Variable Capacitors with a Thin Dielectric Electrolyte Film. ACS Applied Electronic Materials, 2020, 2, 2788-2797.	4.3	7
16	High responsivity in MoS2 phototransistors based on charge trapping HfO2 dielectrics. Communications Materials, 2020, 1, .	6.9	51
17	Effects of water adsorption on conductive filaments of a Ta2O5 atomic switch investigated by nondestructive electrical measurements. Applied Physics Letters, 2020, 117, .	3.3	1
18	A mesoporous SiO ₂ thin films-based ionic decision-maker for solving multi-armed bandit problems. Japanese Journal of Applied Physics, 2020, 59, SIIG01.	1.5	4

#	Article	IF	CITATIONS
19	Oxygen-tolerant operation of all-solid-state ionic-gating devices: advantage of all-solid-state structure for ionic-gating. Japanese Journal of Applied Physics, 2020, 59, SIIG09.	1.5	6
20	A graphene oxide-based ionic decision-maker for simple fabrication and stable operation. Japanese Journal of Applied Physics, 2020, 59, SIIG03.	1.5	4
21	Fabrication of a magnesium-ion-conducting magnesium phosphate electrolyte film using atomic layer deposition. Japanese Journal of Applied Physics, 2020, 59, SIIG08.	1.5	5
22	Invention and Development of the Atomic Switch. Advances in Atom and Single Molecule Machines, 2020, , 1-15.	0.0	2
23	Nanoionic Devices for Physical Property Tuning and Enhancement. Advances in Atom and Single Molecule Machines, 2020, , 161-174.	0.0	1
24	Artificial Synapses Realized by Atomic Switch Technology. Advances in Atom and Single Molecule Machines, 2020, , 175-199.	0.0	1
25	lonic Decision-maker for Solving Multi-armed Bandit Problems. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2020, 71, 453-458.	0.2	0
26	Significant roles of the polymer matrix in the resistive switching behavior of polymer-based atomic switches. Journal Physics D: Applied Physics, 2019, 52, 445301.	2.8	15
27	Oxide ion and proton conduction controlled in nano-grained yttria stabilized ZrO ₂ thin films prepared by pulse laser deposition. Japanese Journal of Applied Physics, 2019, 58, SDDG01.	1.5	9
28	Sr-diffusion-induced inhibition of (100)-oriented growth Ca _{1â^'<i>x</i>} Sr _{<i>x</i> } VO ₃ thin film on a LaAlO ₃ substrate in pulsed laser deposition. Japanese Journal of Applied Physics, 2019, 58, SDDG08.	1.5	2
29	Investigation of Ag and Cu Filament Formation Inside the Metal Sulfide Layer of an Atomic Switch Based on Point-Contact Spectroscopy. ACS Applied Materials & Interfaces, 2019, 11, 27178-27182.	8.0	9
30	Atomic Layer Deposition of a Magnesium Phosphate Solid Electrolyte. Chemistry of Materials, 2019, 31, 5566-5575.	6.7	30
31	Preparation of layered Si materials as anode for lithium-ion batteries. Chemical Physics Letters, 2019, 730, 198-205.	2.6	18
32	In Situ Hard X-ray Photoelectron Spectroscopy of Space Charge Layer in a ZnO-Based All-Solid-State Electric Double-Layer Transistor. Journal of Physical Chemistry C, 2019, 123, 10487-10493.	3.1	13
33	Conductivity Modulation by CaVO ₃ -based All-solid-state Redox Transistor with Ion Transport of Li ⁺ or H ⁺ . Transactions of the Materials Research Society of Japan, 2019, 44, 57-60.	0.2	4
34	Pulse-Induced Resistivity Modulation of Pt/Ti _{0.99} Sc _{0.01} O _{2-Î} /Pt Multilayer with Electron-Ion Mixed Conduction. Transactions of the Materials Research Society of Japan, 2019, 44, 197-201.	0.2	0
35	Correlated Metal SrVO3 Based All-Solid-State Redox Transistors Achieved by Li+ or H+ Transport. Journal of the Physical Society of Japan, 2018, 87, 034802.	1.6	7
36	Unexpected metal-insulator transition in thick Ca1-xSrxVO3 film on SrTiO3 (100) single crystal. Applied Physics Letters, 2018, 112, 133106.	3.3	5

#	Article	IF	CITATIONS
37	Neuromorphic transistor achieved by redox reaction of WO ₃ thin film. Japanese Journal of Applied Physics, 2018, 57, 04FK01.	1.5	6
38	Surface Electronic Structure of Post-Annealed La _{0.67} Sr _{0.33} MnO ₃ Epitaxial Thin Films on SrTiO ₃ (100). Transactions of the Materials Research Society of Japan, 2018, 43, 179-182.	0.2	0
39	Ionic decision-maker created as novel, solid-state devices. Science Advances, 2018, 4, eaau2057.	10.3	28
40	Operating mechanism and resistive switching characteristics of two- and three-terminal atomic switches using a thin metal oxide layer. Journal of Electroceramics, 2017, 39, 143-156.	2.0	24
41	Resonant photoemission and X-ray absorption spectroscopies of lithiated magnetite thin film. Japanese Journal of Applied Physics, 2017, 56, 04CK01.	1.5	1
42	Magnetic Control of Magneto-Electrochemical Cell and Electric Double Layer Transistor. Scientific Reports, 2017, 7, 10534.	3.3	20
43	Current progress of solid state ionics on information and communication device technology. , 2017, , .		1
44	Electrical-pulse-induced resistivity modulation in Pt/TiO2â~ìî'/Pt multilayer device related to nanoionics-based neuromorphic function. Japanese Journal of Applied Physics, 2017, 56, 06GH01.	1.5	7
45	Comparison of subthreshold swing in SrTiO ₃ -based all-solid-state electric-double-layer transistors with Li ₄ SiO ₄ or Y-stabilized-ZrO ₂ solid electrolyte. Japanese Journal of Applied Physics, 2016, 55, 06GJ03.	1.5	9
46	Nanoionic devices enabling a multitude of new features. Nanoscale, 2016, 8, 13873-13879.	5.6	24
47	Nanoionic devices: Interface nanoarchitechtonics for physical property tuning and enhancement. Japanese Journal of Applied Physics, 2016, 55, 1102A4.	1.5	17
48	Synaptic Metaplasticity Realized in Oxide Memristive Devices. Advanced Materials, 2016, 28, 377-384.	21.0	210
49	<i>In Situ</i> Tuning of Magnetization and Magnetoresistance in Fe ₃ O ₄ Thin Film Achieved with All-Solid-State Redox Device. ACS Nano, 2016, 10, 1655-1661.	14.6	80
50	A general strategy toward transition metal carbide/carbon core/shell nanospheres and their application for supercapacitor electrode. Carbon, 2016, 100, 590-599.	10.3	75
51	Revival of "dead―memristive devices: case of WO3â^'x. Physical Chemistry Chemical Physics, 2016, 18, 1392-1396.	2.8	5
52	Decision maker based on atomic switches. AIMS Materials Science, 2016, 3, 245-259.	1.4	22
53	Joule Heating Effect in the Electroforming Process of Pt/WO 3-X /Pt Nanoionics-Based Memristive Devices. ECS Meeting Abstracts, 2016, , .	0.0	0
54	<i>In Situ</i> and Nonvolatile Photoluminescence Tuning and Nanodomain Writing Demonstrated by All-Solid-State Devices Based on Graphene Oxide. ACS Nano, 2015, 9, 2102-2110.	14.6	36

#	Article	IF	CITATIONS
55	Size-Controlled AgI/Ag Heteronanowires in Highly Ordered Alumina Membranes: Superionic Phase Stabilization and Conductivity. Nano Letters, 2015, 15, 5161-5167.	9.1	22
56	Effect of Ionic Conductivity on Response Speed of SrTiO ₃ -Based All-Solid-State Electric-Double-Layer Transistor. ACS Applied Materials & Interfaces, 2015, 7, 12254-12260.	8.0	37
57	Modulation of superconducting critical temperature in niobium film by using all-solid-state electric-double-layer transistor. Applied Physics Letters, 2015, 107, .	3.3	26
58	Micro x-ray photoemission and Raman spectroscopic studies on bandgap tuning of graphene oxide achieved by solid state ionics device. Applied Physics Letters, 2014, 105, 183101.	3.3	23
59	Graphene: In Situ and Non-Volatile Bandgap Tuning of Multilayer Graphene Oxide in an All-Solid-State Electric Double-Layer Transistor (Adv. Mater. 7/2014). Advanced Materials, 2014, 26, 1143-1143.	21.0	2
60	Down-scaling of resistive switching to nanoscale using porous anodic alumina membranes. Journal of Materials Chemistry C, 2014, 2, 349-355.	5.5	46
61	In Situ and Nonâ€Volatile Bandgap Tuning of Multilayer Graphene Oxide in an Allâ€Solidâ€State Electric Double‣ayer Transistor. Advanced Materials, 2014, 26, 1087-1091.	21.0	80
62	Direct observation of redox state modulation at carbon/amorphous tantalum oxide thin film hetero-interface probed by means of in situ hard X-ray photoemission spectroscopy. Solid State Ionics, 2013, 253, 110-118.	2.7	21
63	Theoretical modeling of electrode impedance for an oxygen ion conductor and metallic electrode system based on the interfacial conductivity theory. Part II: Case of the limiting process by non-steady-state surface diffusion. Solid State Ionics, 2013, 249-250, 78-85.	2.7	8
64	Quantized Conductance and Neuromorphic Behavior of a Gapless-Type Ag-Ta2O5 Atomic Switch. Materials Research Society Symposia Proceedings, 2013, 1562, 1.	0.1	5
65	Room temperature redox reaction by oxide ion migration at carbon/Gd-doped CeO ₂ heterointerface probed by an <i>in situ</i> hard x-ray photoemission and soft x-ray absorption spectroscopies. Science and Technology of Advanced Materials, 2013, 14, 045001.	6.1	21
66	All-solid-state electric-double-layer transistor based on oxide ion migration in Gd-doped CeO2 on SrTiO3 single crystal. Applied Physics Letters, 2013, 103, .	3.3	47
67	Synaptic plasticity and memory functions achieved in a WO _{3â^'<i>x</i>} -based nanoionics device by using the principle of atomic switch operation. Nanotechnology, 2013, 24, 384003.	2.6	117
68	Volatile and nonvolatile selective switching of a photo-assisted initialized atomic switch. Nanotechnology, 2013, 24, 384006.	2.6	24
69	Impacts of Temperature and Moisture on the Resistive Switching Characteristics of a Cu-Ta2O5-Based Atomic Switch. Materials Research Society Symposia Proceedings, 2012, 1430, 25.	0.1	1
70	Flexible resistive switching memory using inkjet printing of a solid polymer electrolyte. AIP Advances, 2012, 2, .	1.3	29
71	Oxygen migration process in the interfaces during bipolar resistance switching behavior of WO <i>3â^²x</i> -based nanoionics devices. Applied Physics Letters, 2012, 100, .	3.3	46
72	Flexible Polymer Atomic Switches using Ink-Jet Printing Technique. Materials Research Society Symposia Proceedings, 2012, 1430, 106.	0.1	1

5

#	Article	IF	CITATIONS
73	Effect of sintering conditions on mixed ionic-electronic conducting properties of silver sulfide nanoparticles. Journal of Applied Physics, 2012, 111, 053530.	2.5	3
74	On-Demand Nanodevice with Electrical and Neuromorphic Multifunction Realized by Local Ion Migration. ACS Nano, 2012, 6, 9515-9521.	14.6	186
75	Biomimetics: Controlling the Synaptic Plasticity of a Cu2S Gap-Type Atomic Switch (Adv. Funct. Mater.) Tj ETQq1	1 0.78431 14.9	14 rgBT /Ov
76	Conductance quantization and synaptic behavior in a Ta ₂ O ₅ -based atomic switch. Nanotechnology, 2012, 23, 435705.	2.6	157
77	Controlling the Synaptic Plasticity of a Cu ₂ S Gapâ€₹ype Atomic Switch. Advanced Functional Materials, 2012, 22, 3606-3613.	14.9	160
78	Effects of Moisture on the Switching Characteristics of Oxideâ€Based, Gaplessâ€Type Atomic Switches. Advanced Functional Materials, 2012, 22, 70-77.	14.9	247
79	Atomic Switch: Atom/Ion Movement Controlled Devices for Beyond Vonâ€Neumann Computers. Advanced Materials, 2012, 24, 252-267.	21.0	338
80	Temperature effects on the switching kinetics of a Cu-Ta ₂ O ₅ -based atomic switch. Nanotechnology, 2011, 22, 379502.	2.6	48
81	Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nature Materials, 2011, 10, 591-595.	27.5	1,480
82	Temperature effects on the switching kinetics of a Cu–Ta ₂ O ₅ -based atomic switch. Nanotechnology, 2011, 22, 254013.	2.6	75
83	Memristive operations demonstrated by gap-type atomic switches. Applied Physics A: Materials Science and Processing, 2011, 102, 811-815.	2.3	43
84	A Polymerâ€Electrolyteâ€Based Atomic Switch. Advanced Functional Materials, 2011, 21, 93-99.	14.9	130
85	Three-terminal nanometer metal switches utilizing solid electrolytes. Electronics and Communications in Japan, 2011, 94, 55-61.	0.5	2
86	Theoretical investigation of kinetics of a Cu2S-based gap-type atomic switch. Applied Physics Letters, 2011, 98, 233501.	3.3	14
87	Switching kinetics of a Cu ₂ S-based gap-type atomic switch. Nanotechnology, 2011, 22, 235201.	2.6	73
88	Atomic switches: atomic-movement-controlled nanodevices for new types of computing. Science and Technology of Advanced Materials, 2011, 12, 013003.	6.1	39
89	Nanoionics Switching Devices. , 2011, , 1-8.		0
90	Volatile/Nonvolatile Dual-Functional Atom Transistor. Applied Physics Express, 2011, 4, 015204.	2.4	42

#	Article	IF	CITATIONS
91	Atomic switches: atomic-movement-controlled nanodevices for new types of computing. Science and Technology of Advanced Materials, 2011, 12, 013003.	6.1	8
92	Learning Abilities Achieved by a Single Solid‣tate Atomic Switch. Advanced Materials, 2010, 22, 1831-1834.	21.0	274
93	Rate-Limiting Processes Determining the Switching Time in a Ag ₂ S Atomic Switch. Journal of Physical Chemistry Letters, 2010, 1, 604-608.	4.6	99
94	Forming and switching mechanisms of a cation-migration-based oxide resistive memory. Nanotechnology, 2010, 21, 425205.	2.6	267
95	Nanoionics Switching Devices: "Atomic Switches― MRS Bulletin, 2009, 34, 929-934.	3.5	55
96	Development of polymer electrolytes based resistive switch. Proceedings of SPIE, 2009, , .	0.8	2
97	A solid electrolyte nanometer switch. Electrical Engineering in Japan (English Translation of Denki) Tj ETQq1 1 0.7	'84314 rg 0.4	BT_/Overloc
98	Effect of subgrain boundaries on domain-inverted structure in periodically poled near-stoichiometric LiTaO3 crystal. Optical Materials, 2008, 31, 276-279.	3.6	3
99	Diffusivity of Cu Ions in Solid Electrolyte and Its Effect on the Performance of Nanometer-Scale Switch. IEEE Transactions on Electron Devices, 2008, 55, 3283-3287.	3.0	121
100	Effect of sulfurization conditions on structural and electrical properties of copper sulfide films. Journal of Applied Physics, 2008, 103, .	2.5	50
101	Resistance Switching in Anodic Oxidized Amorphous TiO2Films. Applied Physics Express, 2008, 1, 064002.	2.4	23
102	Optical waveguide properties of single indium oxide nanofibers. Journal of Optics, 2008, 10, 055201.	1.5	10
103	Origin of green emission from ZnS nanobelts as revealed by scanning near-field optical microscopy. Applied Physics Letters, 2008, 92, .	3.3	28
104	Structural studies of copper sulfide films: effect of ambient atmosphere. Science and Technology of Advanced Materials, 2008, 9, 035011.	6.1	83
105	Three-Terminal Nanometer Metal Switches Utilizing Solid Electrolytes. IEEJ Transactions on Electronics, Information and Systems, 2008, 128, 890-895.	0.2	0
106	I-V characteristics of single electron tunneling from symmetric and asymmetric double-barrier tunneling junctions. Applied Physics Letters, 2007, 90, 223112.	3.3	32
107	Electronic transport in Ta2O5 resistive switch. Applied Physics Letters, 2007, 91, .	3.3	213
108	Stabilization of periodically poled domain structures in a quasiphase-matching device using near-stoichiometric LiTaO3. Journal of Applied Physics, 2007, 102, 014101.	2.5	7

#	Article	IF	CITATIONS
109	Photocatalytic nanoparticle deposition on LiNbO3 nanodomain patterns via photovoltaic effect. Applied Physics Letters, 2007, 91, .	3.3	64
110	Stability of engineered domains in ferroelectric LiNbO ₃ and LiTaO ₃ crystals. Physica Scripta, 2007, T129, 103-107.	2.5	8
111	Anomalous phase transition and ionic conductivity of Agl nanowire grown using porous alumina template. Journal of Applied Physics, 2007, 102, 124308.	2.5	23
112	A Ta <inf>2</inf> O <inf>5</inf> solid-electrolyte switch with improved reliability. , 2007, , .		25
113	Resistance switching of an individual Ag ₂ S/Ag nanowire heterostructure. Nanotechnology, 2007, 18, 485202.	2.6	89
114	Patterning sub-Micrometer Domain in MgO: LiNbO <inf>3</inf> Ridge Waveguides by Focused Ion Beam for QPM Nonlinear Optical Devices. , 2007, , .		0
115	Material dependence of switching speed of atomic switches made from silver sulfide and from copper sulfide. Journal of Physics: Conference Series, 2007, 61, 1157-1161.	0.4	21
116	Effect of nonstoichiometric defects on antiparallel domain formation in LiNbO3. Applied Physics Letters, 2007, 91, 232913.	3.3	13
117	Agl/Ag Heterojunction Nanowires: Facile Electrochemical Synthesis, Photoluminescence, and Enhanced Ionic Conductivity. Advanced Functional Materials, 2007, 17, 1466-1472.	14.9	49
118	Size-dependent single electron tunneling effect in Au nanoparticles. Surface Science, 2007, 601, 3907-3911.	1.9	25
119	Control of local ion transport to create unique functional nanodevices based on ionic conductors. Science and Technology of Advanced Materials, 2007, 8, 536-542.	6.1	31
120	Photocatalytic nanoparticle deposition on LiNbO3 engineered nanodomain via photovoltaic effect. , 2007, , .		0
121	Frozen Ferroelectrics to Mobile Ferroelectrics ~New views of LiNbO3 domain engineering~. , 2007, , .		0
122	Domain and Surface Structuring of LiNbO3Single Crystal by Scanning Force Microscopy. Ferroelectrics, 2006, 340, 121-128.	0.6	5
123	Effect of sulfurization conditions and post-deposition annealing treatment on structural and electrical properties of silver sulfide films. Journal of Applied Physics, 2006, 99, 103501.	2.5	52
124	Formation of Metastable Silver Nanowires of Hexagonal Structure and Their Structural Transformation under Electron Beam Irradiation. Japanese Journal of Applied Physics, 2006, 45, 6046-6048.	1.5	27
125	SIMS-depth profile and microstructure studies of Ti-diffused Mg-doped near-stoichiometric lithium niobate waveguide. Journal of Crystal Growth, 2006, 287, 472-477.	1.5	9
126	Domain patterning in LiNbO3 and LiTaO3 by focused electron beam. Journal of Crystal Growth, 2006, 292, 324-327.	1.5	23

#	Article	IF	CITATIONS
127	Template synthesis of M/M2S (M=Ag, Cu) hetero-nanowires by electrochemical technique. Solid State Ionics, 2006, 177, 2527-2531.	2.7	17
128	Surface potential properties on near-stoichiometric LiNbO3 crystals with nanoscale domain-engineered structures. Journal of Electroceramics, 2006, 16, 399-402.	2.0	6
129	Electron-Beam Domain Writing in Stoichiometric LiTaO3Single Crystal by Utilizing Resist Layer. Japanese Journal of Applied Physics, 2006, 45, L399-L402.	1.5	20
130	Effect of Ion Diffusion on Switching Voltage of Solid-Electrolyte Nanometer Switch. Japanese Journal of Applied Physics, 2006, 45, 3666-3668.	1.5	60
131	Switching Property of Atomic Switch Controlled by Solid Electrochemical Reaction. Japanese Journal of Applied Physics, 2006, 45, L364-L366.	1.5	35
132	Fabrication of microdomains at the +Z surface of near-stoichiometric lithium tantalate crystals. Journal Physics D: Applied Physics, 2006, 39, 3103-3106.	2.8	4
133	Surface potential imaging of nanoscale LiNbO3 domains investigated by electrostatic force microscopy. Applied Physics Letters, 2006, 89, 132905.	3.3	36
134	Domain patterning thin crystalline ferroelectric film with focused ion beam for nonlinear photonic integrated circuits. Journal of Applied Physics, 2006, 100, 106103.	2.5	17
135	Domain engineering in LiTaO <inf>3</inf> by focused charge beam: From micro to nano scale. , 2006, , .		0
136	Thermal stability of LiTaO3 domains engineered by scanning force microscopy. Applied Physics Letters, 2006, 89, 142906.	3.3	28
137	Fabrication of nanoscale gaps using a combination of self-assembled molecular and electron beam lithographic techniques. Applied Physics Letters, 2006, 88, 223111.	3.3	60
138	NANOSCALE SURFACE ENGINEERING OF LITHIUM NIOBATE SINGLE CRYSTALS. International Journal of Nanoscience, 2006, 05, 737-742.	0.7	0
139	Solid-Electrolyte Nanometer Switch. IEICE Transactions on Electronics, 2006, E89-C, 1492-1498.	0.6	30
140	Atomic Switch-Nano Device using the Transfer of Atoms(Ions) Hyomen Kagaku, 2006, 27, 232-238.	0.0	3
141	Domain patterns on ferroelectric Rh:BaTiO3 single crystals. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 120, 137-140.	3.5	3
142	Quantized conductance atomic switch. Nature, 2005, 433, 47-50.	27.8	1,115
143	Shapes of isolated domains and field induced evolution of regular and random 2D domain structures in LiNbO3 and LiTaO3. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 120, 109-113.	3.5	25
144	A comparative study on the domain switching characteristics of near stoichiometric lithium niobate and lithium tantalate single crystals. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 120, 125-129.	3.5	22

#	Article	IF	CITATIONS
145	Ferroelectric Nanodomain Properties in Near-Stoichiometric and Congruent LiNbO3Crystals Investigated by Scanning Force Microscopy. Japanese Journal of Applied Physics, 2005, 44, 7012-7014.	1.5	17
146	Nanoscale chemical etching of near-stoichiometric lithium tantalate. Journal of Applied Physics, 2005, 97, 064308.	2.5	33
147	Rearrangement of ferroelectric domain structure induced by chemical etching. Applied Physics Letters, 2005, 87, 022905.	3.3	60
148	Domain inversion and optical damage in Zn doped near-stoichiometric lithium niobate crystal. , 2005, , .		0
149	Ionic-Electronic Conductor Nanostructures: Template-Confined Growth and Nonlinear Electrical Transport. Small, 2005, 1, 971-975.	10.0	62
150	A nonvolatile programmable solid-electrolyte nanometer switch. IEEE Journal of Solid-State Circuits, 2005, 40, 168-176.	5.4	198
151	Nano-Domain Engineering in LiNbO3by Focused Ion Beam. Japanese Journal of Applied Physics, 2005, 44, L1550-L1552.	1.5	23
152	Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy. Applied Physics Letters, 2005, 86, 012906.	3.3	196
153	Effect of Impressing Rate of Field on Polarization Reversal in Mg Doped Near Stoichiometric Lithium Tantalate Single Crystals. Materials Research Society Symposia Proceedings, 2004, 848, 70.	0.1	0
154	Self-Organization in LiNbO3and LiTaO3: Formation of Micro- and Nano-Scale Domain Patterns. Ferroelectrics, 2004, 304, 111-116.	0.6	24
155	Domain And Surface Engineering Of Ferroelectric Crystal LiNbO3For Novel Devices. Materials Technology, 2004, 19, 162-167.	3.0	4
156	Nanoscale domain switching at crystal surfaces of lithium niobate. Chemical Physics Letters, 2003, 377, 475-480.	2.6	38
157	Structure analysis of stoichiometric LiNbO 3 (0 0 0 1) surfaces using low-energy neutral scattering spectroscopy. Surface Science, 2003, 538, L500-L504.	1.9	11
158	Nanoscale Domain Engineering of a Sr 0.61 Ba 0.39 Nb 2 O 6 Single Crystal Using a Scanning Force Microscope. Ferroelectrics, 2003, 292, 83-89.	0.6	10
159	Tbit/Inch 2 Data Storage Using Scanning Nonlinear Dielectric Microscopy. Ferroelectrics, 2003, 292, 51-58.	0.6	4
160	Terabit inchÂ2ferroelectric data storage using scanning nonlinear dielectric microscopy nanodomain engineering system. Nanotechnology, 2003, 14, 637-642.	2.6	40
161	Microscale to nanoscale ferroelectric domain and surface engineering of a near-stoichiometric LiNbO3 crystal. Applied Physics Letters, 2003, 82, 433-435.	3.3	117
162	Ferroelectric nanodomain patterning in a stoichiometric LiNbO 3 crystal. , 2003, 4970, 75.		0

#	Article	IF	CITATIONS
163	Ionic/electronic mixed conductor tip of a scanning tunneling microscope as a metal atom source for nanostructuring. Applied Physics Letters, 2002, 80, 4009-4011.	3.3	56
164	Domain Shape in Congruent and Stoichiometric Lithium Tantalate. Ferroelectrics, 2002, 269, 195-200.	0.6	47
165	Refractive Indices in Undoped and MgO-Doped Near-Stoichiometric LiTaO3 Crystals. Japanese Journal of Applied Physics, 2002, 41, L465-L467.	1.5	52
166	Basic Study on High-density Ferroelectric Data Storage Using Scanning Nonlinear Dielectric Microscopy. Materials Research Society Symposia Proceedings, 2002, 748, 1.	0.1	2
167	Nano-Sized Inverted Domain Formation in Stoichiometric LiTaO 3 Single Crystal Using Scanning Nonlinear Dielectric Microscopy. Integrated Ferroelectrics, 2002, 49, 203-209.	0.7	7
168	Optical Damage Resistance and Refractive Indices in Near-Stoichiometric MgO-Doped LiNbO3. Japanese Journal of Applied Physics, 2002, 41, L49-L51.	1.5	80
169	Imaging and engineering the nanoscale-domain structure of a Sr0.61Ba0.39Nb2O6 crystal using a scanning force microscope. Applied Physics Letters, 2002, 81, 2044-2046.	3.3	57
170	Tbit/inch2 ferroelectric data storage based on scanning nonlinear dielectric microscopy. Applied Physics Letters, 2002, 81, 4401-4403.	3.3	186
171	Formation and disappearance of a nanoscale silver cluster realized by solid electrochemical reaction. Journal of Applied Physics, 2002, 91, 10110.	2.5	119
172	Near-Stoichiometric LiTaO 3 for Bulk Quasi-Phase-Matched Devices. Ferroelectrics, 2002, 273, 199-204.	0.6	33
173	Polarization reversal in congruent and stoichiometric lithium tantalate. Applied Physics Letters, 2001, 79, 3146-3148.	3.3	56
174	Phase Relation of ZrO ₂ -YO _{1.5} -TiO ₂ Ceramics Prepared by Sol-Gel Method. Journal of the Ceramic Society of Japan, 1998, 106, 860-866.	1.3	13
175	Metastable Phase Relationship in the ZrO ₂ -YO _{1.5} , ZrO ₂ -TiO ₂ and YO _{1.5} -TiO ₂ Systems. Journal of the Ceramic Society of Japan 1998 106 782-786	1.3	8
176	Transmission electron microscopy study on epitaxial growth behaviors of sol-gel-derived LiNbO3 films. Journal of Crystal Growth, 1997, 179, 577-584.	1.5	4
177	Mechanical twinning in stoichiometric lithium niobate single crystal. Journal of Crystal Growth, 1997, 180, 101-104.	1.5	24
178	Transmission electron microscopy observation and optical property of sol-gel derived LiNbO3 films. Journal of Materials Research, 1996, 11, 3152-3157.	2.6	14
179	Structural developments during heating in LiNbO3 precursors synthesized by the sol-gel method. Journal of Materials Science, 1995, 30, 1993-1998.	3.7	6
180	Effect of substrates on the crystallinity and morphology of sol-gel-derived epitaxial LiNbO3 films. Journal of Materials Research, 1995, 10, 1779-1783.	2.6	16

9

#	Article	IF	CITATIONS
181	Microstructure and crystallization behaviour of TiO2 precursor prepared by the sol-gel method using metal alkoxide. Journal of Materials Science, 1994, 29, 1617-1622.	3.7	150
182	Crystallization of β, Î2″-Alumina Precursors Prepared from Metal Alkoxides. Journal of the Ceramic Society of Japan, 1991, 99, 567-573.	1.3	0
183	Defect chemical study of Nd2â^xCexCuO4â^Î. Solid State Ionics, 1991, 49, 63-70.	2.7	15
184	Characterization of sodium \$beta;-alumina prepared by sol-gel method. Solid State Ionics, 1990, 40-41, 111-114.	2.7	7
185	An ESR Study of YBa2Cu3O7-xand Y2BaCuO5with Oxygen Deficiencies. Japanese Journal of Applied Physics, 1988, 27, L2336-L2338.	1.5	6
186	Determination of Nonstoichiometry in YBa2Cu3O7-x. Japanese Journal of Applied Physics, 1988, 27, L179-L181.	1.5	59
187	High-Temperature Resistivity Measurements of YBa2Cu3O7-x. Japanese Journal of Applied Physics, 1988, 27, L220-L222.	1.5	31
188	Formation and crystallization of beta-alumina from precursor prepared by sol-gel method using metal alkoxides. Solid State Ionics, 1987, 25, 171-176.	2.7	22
189	Nano domain engineering using scanning nonlinear dielectric microscopy. , 0, , .		1
190	Temperature dependant domain structures of lithium niobate single crystals. , 0, , .		0
191	A nonvolatile programmable solid electrolyte nanometer switch. , 0, , .		13

192 Three terminal solid-electrolyte nanometer switch. , 0, , .