Sathyamangla V Naga Prasad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9088647/publications.pdf

Version: 2024-02-01

44 papers

2,271 citations

304743 22 h-index 254184 43 g-index

63 all docs

63 docs citations

63 times ranked

3572 citing authors

#	Article	IF	Citations
1	Anthracycline Cardiotoxicity Is Associated With Elevated $\hat{I}^21\hat{a}\in$ Adrenergic Receptor Density. Journal of the American Heart Association, 2022, , e023457.	3.7	1
2	Gene therapy targeting protein trafficking regulator MOG1 in mouse models of Brugada syndrome, arrhythmias, and mild cardiomyopathy. Science Translational Medicine, 2022, 14 , .	12.4	14
3	Respiratory syncytial virus induces \hat{l}^2 ₂ -adrenergic receptor dysfunction in human airway smooth muscle cells. Science Signaling, 2021, 14, .	3.6	6
4	In cardiac muscle cells, both adrenergic agonists and antagonists induce reactive oxygen species from NOX2 but mutually attenuate each other's effects. European Journal of Pharmacology, 2021, 908, 174350.	3.5	2
5	Translocation of TRPV4-PI3K \hat{I}^3 complexes to the plasma membrane drives myofibroblast transdifferentiation. Science Signaling, 2019, 12, .	3.6	21
6	Pregnancy-Associated Cardiac Hypertrophy in Corin-Deficient Mice: Observations in a Transgenic Model of Preeclampsia. Canadian Journal of Cardiology, 2019, 35, 68-76.	1.7	19
7	Relative quantification of betaâ€adrenergic receptor in peripheral blood cells using flow cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 563-570.	1.5	10
8	Tumor Necrosis Factor-α in Heart Failure: an Updated Review. Current Cardiology Reports, 2018, 20, 117.	2.9	110
9	G Protein-Coupled Receptor Resensitization Paradigms. International Review of Cell and Molecular Biology, 2018, 339, 63-91.	3.2	15
10	Scaffolding Function of PI3Kgamma Emerges from Enzyme's Shadow. Journal of Molecular Biology, 2017, 429, 763-772.	4.2	5
11	The TMAO-Producing Enzyme Flavin-Containing Monooxygenase 3 Regulates Obesity and the Beiging of White Adipose Tissue. Cell Reports, 2017, 19, 2451-2461.	6.4	194
12	Noncanonical regulation of insulin-mediated ERK activation by phosphoinositide 3-kinase \hat{l}^3 . Molecular Biology of the Cell, 2017, 28, 3112-3122.	2.1	10
13	In vitro contraction protects against palmitate-induced insulin resistance in C2C12 myotubes. American Journal of Physiology - Cell Physiology, 2017, 313, C575-C583.	4.6	31
14	Preface: Changing Paradigms for G-Protein–Coupled Receptor Signaling. Journal of Cardiovascular Pharmacology, 2017, 70, 1-2.	1.9	1
15	A unique microRNA profile in end-stage heart failure indicates alterations in specific cardiovascular signaling networks. PLoS ONE, 2017, 12, e0170456.	2.5	26
16	Phosphorylation of Src by phosphoinositide 3-kinase regulates beta-adrenergic receptor-mediated EGFR transactivation. Cellular Signalling, 2016, 28, 1580-1592.	3.6	21
17	Stability and function of adult vasculature is sustained by Akt/Jagged1 signalling axis in endothelium. Nature Communications, 2016, 7, 10960.	12.8	77
18	Phosphorylation inactivation of endothelial nitric oxide synthesis in pulmonary arterial hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L1199-L1205.	2.9	37

#	Article	IF	Citations
19	Catestatin Gly364Ser Variant Alters Systemic Blood Pressure and the Risk for Hypertension in Human Populations via Endothelial Nitric Oxide Pathway. Hypertension, 2016, 68, 334-347.	2.7	21
20	Bidirectional cross-regulation between ErbB2 and \hat{l}^2 -adrenergic signalling pathways. Cardiovascular Research, 2016, 109, 358-373.	3.8	44
21	Flow Cytometric Quantification of Peripheral Blood Cell \hat{l}^2 -Adrenergic Receptor Density and Urinary Endothelial Cell-Derived Microparticles in Pulmonary Arterial Hypertension. PLoS ONE, 2016, 11, e0156940.	2.5	20
22	Regulation of Murine Ovarian Epithelial Carcinoma by Vaccination against the Cytoplasmic Domain of Anti-MÃ $\frac{1}{4}$ llerian Hormone Receptor II. Journal of Immunology Research, 2015, 2015, 1-13.	2.2	8
23	Defective Resensitization in Human Airway Smooth Muscle Cells Evokes \hat{I}^2 -Adrenergic Receptor Dysfunction in Severe Asthma. PLoS ONE, 2015, 10, e0125803.	2.5	13
24	A Mechanism of Global Shape-dependent Recognition and Phosphorylation of Filamin by Protein Kinase A. Journal of Biological Chemistry, 2015, 290, 8527-8538.	3.4	14
25	Increased Heme Levels in the Heart Lead to Exacerbated Ischemic Injury. Journal of the American Heart Association, 2015, 4, e002272.	3.7	45
26	G Protein-Coupled Receptors Directly Bind Filamin A with High Affinity and Promote Filamin Phosphorylation. Biochemistry, 2015, 54, 6673-6683.	2.5	23
27	PCSK6-mediated corin activation is essential for normal blood pressure. Nature Medicine, 2015, 21, 1048-1053.	30.7	117
28	Alcohol-induced autophagy contributes to loss in skeletal muscle mass. Autophagy, 2014, 10, 677-690.	9.1	121
29	Differential effects of Akt1 signaling on short- versus long-term consequences of myocardial infarction and reperfusion injury. Laboratory Investigation, 2014, 94, 1083-1091.	3.7	20
30	Phosphoinositide 3-Kinase Î ³ Inhibits Cardiac GSK-3 Independently of Akt. Science Signaling, 2013, 6, ra4.	3.6	19
31	G _{βγ} -Independent Recruitment of G-Protein Coupled Receptor Kinase 2 Drives Tumor Necrosis Factor α–Induced Cardiac β-Adrenergic Receptor Dysfunction. Circulation, 2013, 128, 377-387.	1.6	36
32	Targeting Inhibitor of Protein Phosphatase 2A (I2PP2A) Mediates Plasma Membrane Betaâ€Adrenergic Receptor Resensitization. FASEB Journal, 2013, 27, lb557.	0.5	0
33	Inhibition of Protein Phosphatase 2A Activity by PI3K \hat{l}^3 Regulates \hat{l}^2 -Adrenergic Receptor Function. Molecular Cell, 2011, 41, 636-648.	9.7	88
34	Regulation of Î ² -adrenergic receptor function. Cell Cycle, 2011, 10, 3684-3691.	2.6	60
35	MicroRNAsâ€"Regulators of Signaling Networks in Dilated Cardiomyopathy. Journal of Cardiovascular Translational Research, 2010, 3, 225-234.	2.4	16
36	Unique MicroRNA Profile in End-stage Heart Failure Indicates Alterations in Specific Cardiovascular Signaling Networks. Journal of Biological Chemistry, 2009, 284, 27487-27499.	3.4	121

#	Article	IF	CITATIONS
37	Dynamic Regulation of Phosphoinositide 3-Kinase- \hat{l}^3 Activity and \hat{l}^2 -Adrenergic Receptor Trafficking in End-Stage Human Heart Failure. Circulation, 2007, 116, 2571-2579.	1.6	54
38	Protein kinase activity of phosphoinositide 3-kinase regulates \hat{l}^2 -adrenergic receptor endocytosis. Nature Cell Biology, 2005, 7, 785-796.	10.3	125
39	Restoration of \hat{l}^2 -Adrenergic Receptor Signaling and Contractile Function in Heart Failure by Disruption of the \hat{l}^2 ARK1/Phosphoinositide 3-Kinase Complex. Circulation, 2005, 111, 2579-2587.	1.6	72
40	Role of Phosphoinositide 3-Kinase in Cardiac Function and Heart Failure. Trends in Cardiovascular Medicine, 2003, 13, 206-212.	4.9	41
41	Inhibition of receptor-localized PI3K preserves cardiac \hat{l}^2 -adrenergic receptor function and ameliorates pressure overload heart failure. Journal of Clinical Investigation, 2003, 112, 1067-1079.	8.2	117
42	Phosphoinositide 3-kinase regulates \hat{I}^2 2-adrenergic receptor endocytosis by AP-2 recruitment to the receptor \hat{I}^2 -arrestin complex. Journal of Cell Biology, 2002, 158, 563-575.	5 . 2	178
43	Agonist-dependent Recruitment of Phosphoinositide 3-Kinase to the Membrane by \hat{l}^2 -Adrenergic Receptor Kinase 1. Journal of Biological Chemistry, 2001, 276, 18953-18959.	3.4	168
44	Cardiac Overexpression of a G _q Inhibitor Blocks Induction of Extracellular Signal–Regulated Kinase and c-Jun NH ₂ -Terminal Kinase Activity in In Vivo Pressure Overload. Circulation, 2001, 103, 1453-1458.	1.6	130