Jordi Benet-Buchholz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9088635/publications.pdf

Version: 2024-02-01

255 papers 11,374 citations

25034 57 h-index 90 g-index

296 all docs

296 docs citations

296 times ranked

10206 citing authors

#	Article	IF	CITATIONS
1	A New Ru Complex Capable of Catalytically Oxidizing Water to Molecular Dioxygen. Journal of the American Chemical Society, 2004, 126, 7798-7799.	13.7	371
2	Direct Cupration of Fluoroform. Journal of the American Chemical Society, 2011, 133, 20901-20913.	13.7	304
3	Cationic $\hat{l}\cdot 1/\hat{l}\cdot 2$ -Gold(I) Complexes of Simple Arenes. Angewandte Chemie - International Edition, 2006, 45, 5455-5459.	13.8	268
4	Redox Non-innocent Ligand Controls Water Oxidation Overpotential in a New Family of Mononuclear Cu-Based Efficient Catalysts. Journal of the American Chemical Society, 2015, 137, 6758-6761.	13.7	266
5	Efficient carbonate synthesis under mild conditions through cycloaddition of carbon dioxide to oxiranes using a Zn(salphen) catalyst. Chemical Communications, 2010, 46, 4580.	4.1	265
6	Stereospecific CH Oxidation with H ₂ O ₂ Catalyzed by a Chemically Robust Siteâ€solated Iron Catalyst. Angewandte Chemie - International Edition, 2009, 48, 5720-5723.	13.8	254
7	The Ruâ^Hbpp Water Oxidation Catalyst. Journal of the American Chemical Society, 2009, 131, 15176-15187.	13.7	253
8	Intramolecular Proton Transfer Boosts Water Oxidation Catalyzed by a Ru Complex. Journal of the American Chemical Society, 2015, 137, 10786-10795.	13.7	246
9	An Efficient Iron Catalyst for the Synthesis of Five―and Sixâ€Membered Organic Carbonates under Mild Conditions. Advanced Synthesis and Catalysis, 2012, 354, 469-476.	4.3	244
10	Quantitative Evaluation of Anion–π Interactions in Solution. Angewandte Chemie - International Edition, 2008, 47, 4114-4118.	13.8	200
11	[(NHC)CuX] complexes: Synthesis, characterization and catalytic activities in reduction reactions and Click Chemistry. On the advantage of using well-defined catalytic systems. Dalton Transactions, 2010, 39, 7595.	3.3	197
12	Experimental and Theoretical Investigations of New Dinuclear Palladium Complexes as Precatalysts for the Amination of Aryl Chlorides. Journal of the American Chemical Society, 2006, 128, 6376-6390.	13.7	148
13	NO-Independent stimulators of soluble guanylate cyclase. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 781-784.	2.2	144
14	Facile Câ^'H Bond Cleavage via a Proton-Coupled Electron Transfer Involving a Câ^'H···Cu ^{II} Interaction. Journal of the American Chemical Society, 2010, 132, 12299-12306.	13.7	131
15	Effects of Metal Coordination Geometry on Stabilization of Human Telomeric Quadruplex DNA by Square-Planar and Square-Pyramidal Metal Complexes. Inorganic Chemistry, 2008, 47, 11910-11919.	4.0	126
16	Anion Influence on the Structures of a Series of Copper(II) Metalâ^'Organic Frameworks. Inorganic Chemistry, 2006, 45, 1617-1626.	4.0	125
17	Effective Chirogenesis in a Bis(metallosalphen) Complex through Host–Guest Binding with Carboxylic Acids. Angewandte Chemie - International Edition, 2011, 50, 713-716.	13.8	108
18	Easy Access to the Copper(III) Anion [Cu(CF ₃) ₄] ^{â^'} . Angewandte Chemie - International Edition, 2015, 54, 2745-2749.	13.8	107

#	Article	IF	CITATIONS
19	Fine-Tuning the Electronic Properties of Highly Stable Organometallic Culll Complexes Containing Monoanionic Macrocyclic Ligands. Chemistry - A European Journal, 2005, 11, 5146-5156.	3.3	106
20	Catalytic Four-Electron Reduction of O ₂ via Rate-Determining Proton-Coupled Electron Transfer to a Dinuclear Cobalt-μ-1,2-peroxo Complex. Journal of the American Chemical Society, 2012, 134, 9906-9909.	13.7	106
21	A Million Turnover Molecular Anode for Catalytic Water Oxidation. Angewandte Chemie - International Edition, 2016, 55, 15382-15386.	13.8	90
22	Can the Disproportion of Oxidation State III Be Favored in Rullâ "OH2/RulVO Systems?. Journal of the American Chemical Society, 2006, 128, 5306-5307.	13.7	87
23	Cinnabaramides Aâ^C:Â Analogues of Lactacystin and Salinosporamide from a Terrestrial Streptomycete. Journal of Natural Products, 2007, 70, 246-252.	3.0	86
24	Shape-Persistent Octanuclear Zinc Salen Clusters: Synthesis, Characterization, and Catalysis. Inorganic Chemistry, 2011, 50, 7934-7936.	4.0	86
25	Medicinal Chemistry Optimization of Acyldepsipeptides of the Enopeptin Class Antibiotics. ChemMedChem, 2006, 1, 689-693.	3.2	84
26	[Pd(NHC)(allyl)Cl] Complexes: Synthesis and Determination of the NHC Percent Buried Volume (% <i>V</i> bur) Steric Parameter. European Journal of Inorganic Chemistry, 2009, 2009, 1767-1773.	2.0	82
27	A Selfâ€Improved Waterâ€Oxidation Catalyst: Is One Site Really Enough?. Angewandte Chemie - International Edition, 2014, 53, 205-209.	13.8	82
28	Mononuclear Ruthenium–Water Oxidation Catalysts: Discerning between Electronic and Hydrogen-Bonding Effects. Inorganic Chemistry, 2013, 52, 3591-3593.	4.0	80
29	Tracking the Structural and Electronic Configurations of a Cobalt Proton Reduction Catalyst in Water. Journal of the American Chemical Society, 2016, 138, 10586-10596.	13.7	77
30	Supramolecular Water Oxidation with Ru–bdaâ€Based Catalysts. Chemistry - A European Journal, 2014, 20, 17282-17286.	3.3	76
31	Easy Access to the Copper(III) Anion [Cu(CF ₃) ₄] ^{â^'} . Angewandte Chemie, 2015, 127, 2783-2787.	2.0	72
32	Synthesis, Structure, and Acidâ^Base and Redox Properties of a Family of New Ru(II) Isomeric Complexes Containing the Trpy and the Dinucleating Hbpp Ligands. Inorganic Chemistry, 2003, 42, 8385-8394.	4.0	71
33	Easy Excited-State Trapping and Record High <i>T</i> _{TIESST} in a Spin-Crossover Polyanionic Fe ^{II} Trimer. Journal of the American Chemical Society, 2015, 137, 11924-11927.	13.7	71
34	Inclusion of Cavitands and Calix[4]arenes into a Metallobridgedpara-(1H-Imidazo[4,5-f][3,8]phenanthrolin-2-yl)-Expanded Calix[4]arene. Angewandte Chemie - International Edition, 2007, 46, 198-201.	13.8	70
35	Self-assembly of Zn(salphen) complexes: Steric regulation, stability studies and crystallographic analysis revealing an unexpected dimeric 3,3′-t-Bu-substituted Zn(salphen) complex. Dalton Transactions, 2010, 39, 4541.	3.3	70
36	Insertion of Acrylonitrile into Palladium Methyl Bonds in Neutral and Anionic Pd(II) Complexes. Journal of the American Chemical Society, 2005, 127, 1854-1869.	13.7	69

#	Article	IF	Citations
37	Second Coordination Sphere Effects in an Evolved Ru Complex Based on Highly Adaptable Ligand Results in Rapid Water Oxidation Catalysis. Journal of the American Chemical Society, 2020, 142, 5068-5077.	13.7	69
38	The Challenge of Palladium-Catalyzed Aromatic Azidocarbonylation: From Mechanistic and Catalyst Deactivation Studies to a Highly Efficient Process. Organometallics, 2014, 33, 736-752.	2.3	68
39	Spirodiclofen and Spiromesifen – Novel Acaricidal and Insecticidal Tetronic Acid Derivatives with a New Mode of Action. Chimia, 2003, 57, 697-701.	0.6	67
40	Highly Modular POP Ligands for Asymmetric Hydrogenation: Synthesis, Catalytic Activity, and Mechanism. Chemistry - A European Journal, 2010, 16, 6495-6508.	3.3	67
41	Synthesis, Structure, and Spectroscopic, Photochemical, Redox, and Catalytic Properties of Ruthenium(II) Isomeric Complexes Containing Dimethyl Sulfoxide, Chloro, and the Dinucleating Bis(2-pyridyl)pyrazole Ligands. Inorganic Chemistry, 2003, 42, 2040-2048.	4.0	66
42	Expedient Method for the Transmetalation of Zn(II)-Centered Salphen Complexes. Inorganic Chemistry, 2007, 46, 7265-7267.	4.0	66
43	Can Ni Complexes Behave as Molecular Water Oxidation Catalysts?. ACS Catalysis, 2019, 9, 3936-3945.	11.2	64
44	Structure and Total Synthesis of Lysobactin (Katanosinâ€B). Angewandte Chemie - International Edition, 2007, 46, 2039-2042.	13.8	63
45	Supramolecular Adsorption of Alkaloids by Metallosalphen Complexes. Inorganic Chemistry, 2008, 47, 4256-4263.	4.0	63
46	Solution-phase parallel synthesis of 4,6-diaryl-pyrimidine-2-ylamines and 2-amino-5,5-disubstituted-3,5-dihydro-imidazol-4-ones via a rearrangement. Tetrahedron, 2003, 59, 655-662.	1.9	62
47	Asymmetric Hydrogenation of Heteroaromatic Compounds Mediated by Iridiumâ^'(<i>P-OP</i>) Complexes. Organometallics, 2010, 29, 6627-6631.	2.3	62
48	Copper(II) Hexaaza Macrocyclic Binuclear Complexes Obtained from the Reaction of Their Copper(I) Derivates and Molecular Dioxygen. Inorganic Chemistry, 2006, 45, 3569-3581.	4.0	61
49	Efficient Bulky Phosphines for the Selective Telomerization of $1,3$ -Butadiene with Methanol. Journal of the American Chemical Society, 2010, $132,6463$ - 6473 .	13.7	61
50	Synthesis, Structure, and Reactivity of New Tetranuclear Ru-Hbpp-Based Water-Oxidation Catalysts. Inorganic Chemistry, 2011, 50, 2771-2781.	4.0	61
51	Solid-State Self-Assembly of a Calix[4]pyrroleâ°'Resorcinarene Hybrid into a Hexameric Cage. Journal of the American Chemical Society, 2007, 129, 3820-3821.	13.7	60
52	Chemodivergent Metathesis of Dienynes Catalyzed by Ruthenium–Indenylidene Complexes: An Experimental and Computational Study. Chemistry - A European Journal, 2009, 15, 10244-10254.	3. 3	60
53	lonic Interaction as a Powerful Driving Force for the Formation of Heterobidentate Assembly Ligands. Chemistry - A European Journal, 2007, 13, 3424-3430.	3.3	59
54	Ligand Geometry Directs OO Bondâ€Formation Pathway in Rutheniumâ€Based Water Oxidation Catalyst. Angewandte Chemie - International Edition, 2012, 51, 5967-5970.	13.8	59

#	Article	IF	Citations
55	Redox Metal–Ligand Cooperativity Enables Robust and Efficient Water Oxidation Catalysis at Neutral pH with Macrocyclic Copper Complexes. Journal of the American Chemical Society, 2020, 142, 17434-17446.	13.7	59
56	Anionâ€Templated Formation of Supramolecular Multinuclear Assemblies. Chemistry - A European Journal, 2009, 15, 5695-5700.	3.3	58
57	The Critical Effect of the Countercation in the Direct Cupration of Fluoroform with [Cu(OR) ₂] ^{â^²} . Angewandte Chemie - International Edition, 2013, 52, 11637-11641.	13.8	56
58	Transition Metal-Mediated Intramolecular [2+2+2] Cycloisomerizations of Cyclic Triynes and Enediynes. Journal of Organic Chemistry, 2005, 70, 2033-2041.	3.2	55
59	Synthesis, Characterization, and Structure of [GaCl3(NHC)] Complexes. Organometallics, 2007, 26, 3256-3259.	2.3	55
60	Colorimetric Discrimination between Important Alkaloid Nuclei Mediated by a Bis-Salphen Chromophore. Organic Letters, 2008, 10, 3311-3314.	4.6	55
61	Olefinmetathesis as a tool for multinuclear Co(<scp>iii</scp>)salen catalyst construction: access to cooperative catalysts. Dalton Transactions, 2010, 39, 593-602.	3.3	54
62	Water oxidation electrocatalysis using ruthenium coordination oligomers adsorbed on multiwalled carbon nanotubes. Nature Chemistry, 2020, 12, 1060-1066.	13.6	54
63	Mechanistic Insights into the Chemistry of Ru(II) Complexes Containing Cl and DMSO Ligands. Inorganic Chemistry, 2007, 46, 10707-10716.	4.0	53
64	Isolation and Structural Characterization of a Binuclear Intermediate Species Pertinent to Transmetalation of Zn(salphen) Complexes and the Formation of Polynuclear Salen Structures. Inorganic Chemistry, 2009, 48, 846-853.	4.0	53
65	Copolymerization of CO ₂ and Cyclohexene Oxide Mediated by Yb(salen)-Based Complexes. Macromolecules, 2015, 48, 8197-8207.	4.8	53
66	Hydrogen Bonding Rescues Overpotential in Seven-Coordinated Ru Water Oxidation Catalysts. ACS Catalysis, 2017, 7, 6525-6532.	11.2	50
67	Capturing Elusive Cobaltacycle Intermediates: A Realâ€Time Snapshot of the Cp*Co ^{III} â€Catalyzed Oxidative Alkyne Annulation. Angewandte Chemie - International Edition, 2017, 56, 12137-12141.	13.8	50
68	Efficient Regioselective Synthesis of 6-Amino-5-benzoyl-1-Substituted 2(1H)-Pyridinones. Journal of Organic Chemistry, 2005, 70, 9463-9469.	3.2	49
69	Structural and Kinetic Study of Reversible CO ₂ Fixation by Dicopper Macrocyclic Complexes. From Intramolecular Binding to Self-Assembly of Molecular Boxes. Inorganic Chemistry, 2007, 46, 9098-9110.	4.0	49
70	Crystallographic and Theoretical Evidence of Anion–π and Hydrogenâ€Bonding Interactions in a Squaramide–Nitrate Salt. European Journal of Organic Chemistry, 2008, 2008, 1864-1868.	2.4	49
71	SPANphos: trans-spanning diphosphines as cis chelating ligands!. Dalton Transactions, 2006, , 268-278.	3.3	48
72	The longest oligothiophene ever examined by X-ray structure analysis. Journal of Materials Chemistry, 2006, 16, 728-735.	6.7	48

#	Article	IF	CITATIONS
7 3	Versatile Approach toward the Self-Assembly of Heteromultimetallic Salen Structures. Inorganic Chemistry, 2008, 47, 2925-2927.	4.0	48
74	Catalysis by Design: Wideâ€Biteâ€Angle Diphosphines by Assembly of Ditopic Ligands for Selective Rhodiumâ€Catalyzed Hydroformylation. Angewandte Chemie - International Edition, 2007, 46, 7247-7250.	13.8	47
7 5	Efficient Asymmetric Synthesis of \hat{l}^2 -Amino Acid BAY 10-8888/PLD-118, a Novel Antifungal for the Treatment of Yeast Infections. Synthesis, 2003, 1, 0136-0140.	2.3	45
76	Axial ligand control over monolayer and bilayer formation of metal-salophens at the liquid–solid interface. Chemical Communications, 2010, 46, 2548.	4.1	44
77	Fast O2Binding at Dicopper Complexes Containing Schiff-Base Dinucleating Ligands. Inorganic Chemistry, 2007, 46, 4997-5012. Multireversible Redox Processes in Pentanuclear Bis(Triple-Helical) Manganese Complexes Featuring	4.0	43
78	an Oxo-Centered triangular {Mn ^{II} (î½ ₃ -O)} ⁵⁺ or {Mn ^{III} (sup>6+Core Wrapped by Two {Mn ^{III} ₂ }(sup>6+Core Wrapped by Two {Mn ^{II} ₂ (sup>6+Core Wrapped by Two	4.0	43
79	8427-8436. Small Bite-Angle P–OP Ligands for Asymmetric Hydroformylation and Hydrogenation. Organic Letters, 2013, 15, 3634-3637.	4.6	43
80	On the Feasibility of Nickel-Catalyzed Trifluoromethylation of Aryl Halides. Organometallics, 2014, 33, 6531-6543.	2.3	43
81	New Ru Complexes Containing the N-Tridentate bpea and Phosphine Ligands:Â Consequences of Meridional vs Facial Geometry. Inorganic Chemistry, 2006, 45, 10520-10529.	4.0	41
82	The Role of Seven-Coordination in Ru-Catalyzed Water Oxidation. ACS Catalysis, 2018, 8, 2039-2048.	11.2	41
83	A Ruâ∈Hbppâ∈Based Waterâ€Oxidation Catalyst Anchored on Rutile TiO ₂ . ChemSusChem, 2009, 2, 321-329.	6.8	40
84	Steric and Electronic Parameters Characterizing Bulky and Electron-Rich Dialkylbiarylphosphines. Organometallics, 2011, 30, 1668-1676.	2.3	40
85	Wellâ€Defined CuC ₂ F ₅ Complexes and Pentafluoroethylation of Acid Chlorides. Angewandte Chemie - International Edition, 2015, 54, 5218-5222.	13.8	40
86	Solid Phases of Cyclopentane:  Combined Experimental and Simulation Study. Journal of Physical Chemistry B, 2008, 112, 3746-3758.	2.6	39
87	Synthesis, Characterization, and Reactivity of Dyad Rutheniumâ€Based Molecules for Lightâ€Driven Oxidation Catalysis. Chemistry - A European Journal, 2013, 19, 7162-7172.	3.3	39
88	Spirocyclopropanated Bicyclopropylidenes: Straightforward Preparation, Physical Properties, and Chemical Transformations. Chemistry - A European Journal, 2001, 7, 4021-4034.	3.3	38
89	SPOs as new ligands in Rh(iii) catalyzed enantioselective transfer hydrogenation. Catalysis Science and Technology, 2011, 1, 401.	4.1	38
90	Synthesis of Nitrogen-Containing 15-Membered Triacetylenic Macrocycles. Stable Complex with Palladium(0). Organometallics, 2004, 23, 2762-2767.	2.3	37

#	Article	IF	Citations
91	Hysteretic Spin Crossover above Room Temperature and Magnetic Coupling in Trinuclear Transitionâ€Metal Complexes with Anionic 1,2,4â€Triazole Ligands. Chemistry - A European Journal, 2014, 20, 5369-5379.	3.3	37
92	Phosphinothiolates as Ligands for Polyhydrido Copper Nanoclusters. Chemistry - A European Journal, 2014, 20, 16121-16127.	3.3	37
93	Efficient Lightâ€Driven Water Oxidation Catalysis by Dinuclear Ruthenium Complexes. ChemSusChem, 2015, 8, 3688-3696.	6.8	37
94	Consecutive Ligandâ€Based Electron Transfer in New Molecular Copperâ€Based Water Oxidation Catalysts. Angewandte Chemie - International Edition, 2021, 60, 18639-18644.	13.8	37
95	Pd-catalysed methoxycarbonylation of vinylarenes using chiral monodentate phosphetanes and phospholane as ligands. Effect of substrate substituents on enantioselectivity. Dalton Transactions, 2007, , 5524.	3.3	36
96	Dinuclear Cobalt Complexes with a Decadentate Ligand Scaffold: Hydrogen Evolution and Oxygen Reduction Catalysis. Chemistry - A European Journal, 2016, 22, 361-369.	3.3	36
97	Tetraalkynyl calix[4]arenes with advanced NLO properties. Chemical Communications, 2005, , 2747.	4.1	35
98	Phosphinooxazolines Derived from 3â€Aminoâ€1,2â€diols: Highly Efficient Modular <i>Pâ€N</i> Ligands. Advanced Synthesis and Catalysis, 2007, 349, 2265-2278.	4.3	35
99	SPANphos Ligands in Palladium atalyzed Asymmetric Fluorination. European Journal of Organic Chemistry, 2012, 2012, 4844-4852.	2.4	35
100	Isolation of a Ru(iv) side-on peroxo intermediate in the water oxidation reaction. Nature Chemistry, 2021, 13, 800-804.	13.6	35
101	Synthesis, Structure, and Substitution Mechanism of New Ru(II) Complexes Containing 1,4,7-Trithiacyclononane and 1,10-Phenanthroline Ligands. Inorganic Chemistry, 2004, 43, 5403-5409.	4.0	34
102	Practical Synthesis of Shi's Diester Fructose Derivative for Catalytic Asymmetric Epoxidation of Alkenes. Journal of Organic Chemistry, 2005, 70, 10143-10146.	3.2	34
103	Enthalpy driven nitrate complexation by guanidinium-based macrocycles. New Journal of Chemistry, 2007, 31, 736.	2.8	34
104	Modular Spiro Bidentate Nitrogen Ligands – Synthesis, Resolution and Application in Asymmetric Catalysis. European Journal of Organic Chemistry, 2008, 2008, 6197-6205.	2.4	34
105	Synthesis and Biological Evaluation of a New Series of Hexahydro-2 <i>H</i> -pyrano[3,2- <i>c</i>]quinolines as Novel Selective Ïf ₁ Receptor Ligands. Journal of Medicinal Chemistry, 2013, 56, 3656-3665.	6.4	34
106	The Trifluoromethyl Anion. Angewandte Chemie - International Edition, 2015, 54, 15289-15293.	13.8	34
107	Iron vs. rutheniumâ€"a comparison of the stereoselectivity in catalytic olefin epoxidation. Dalton Transactions, 2009, , 5910.	3.3	33
108	Donor–Acceptor Metallocene Catalysts for the Production of UHMW-PE: Pushing the Selectivity for Chain Growth to Its Limits. Angewandte Chemie - International Edition, 2006, 45, 1799-1803.	13.8	32

#	Article	IF	CITATIONS
109	Modular Synthesis of Heterobimetallic Salen Structures Using Metal Templation. Organic Letters, 2009, 11, 5218-5221.	4.6	32
110	Dinuclear Ru–Aqua Complexes for Selective Epoxidation Catalysis Based on Supramolecular Substrate Orientation Effects. Chemistry - A European Journal, 2014, 20, 3898-3902.	3.3	32
111	How to circumvent plastic phases: the single crystal X-ray analysis of norbornadiene. Chemical Communications, 1998, , 2003-2004.	4.1	31
112	An approach to bimetallic catalysts by ligand design. Dalton Transactions, 2010, 39, 8560.	3.3	31
113	Synthesis, Structure, and Electronic Properties of RuN6 Dinuclear Ru-Hbpp Complexes. Inorganic Chemistry, 2012, 51, 320-327.	4.0	31
114	Atropisomeric Discrimination in New Rull Complexes Containing the C2-Symmetric Didentate Chiral Phenyl-1,2-bisoxazolinic Ligand. Chemistry - A European Journal, 2006, 12, 2798-2807.	3.3	30
115	Synthesis, structural characterization and anion binding studies of palladium macrocycles with hydrogen-bonding ligands. Dalton Transactions, 2007, , 3516.	3.3	30
116	Facile Isolation of Bisimines Based on 3,3â€~-Diaminobenzidine:  Direct Access to Unsymmetrical Bimetallic Salphen Building Blocks. Journal of Organic Chemistry, 2007, 72, 7018-7021.	3.2	30
117	A Modular Approach Towards Nonsymmetrical Bis(metallosalen) Building Blocks. European Journal of Inorganic Chemistry, 2008, 2008, 2863-2873.	2.0	30
118	Stereodivergent Syntheses of Conduramines and Aminocyclitols. Organic Letters, 2006, 8, 3069-3072.	4.6	29
119	New <i>C</i> ₂ â€6ymmetric Diphosphite Ligands Derived from Carbohydrates: Effect of the Remote Stereocenters on Asymmetric Catalysis. Advanced Synthesis and Catalysis, 2007, 349, 1983-1998.	4.3	29
120	Large Pâ^'P Distance Diphosphines and Their Monophosphine Analogues as Ligands in the Palladium-Catalyzed Telomerization of 1,3-Butadiene and Methanol. Organometallics, 2011, 30, 792-799.	2.3	29
121	Boron Trifluoride-Induced, New Stereospecific Rearrangements of Chiral Epoxy Ethers. Ready Access to Enantiopure 4-(Diarylmethyl)-1,3-dioxolanes and 4,5-Disubstituted Tetrahydrobenzo[c]oxepin-4-ols. Journal of Organic Chemistry, 2006, 71, 1537-1544.	3.2	28
122	The use of Moâ€Kα radiation in the assignment of the absolute configuration of light-atom molecules; the importance of high-resolution data. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2014, 70, 660-668.	1.1	28
123	Weakly Coordinated Cobaltacycles: Trapping Catalytically Competent Intermediates in Cp*Co III Catalysis. Angewandte Chemie - International Edition, 2020, 59, 6239-6243.	13.8	28
124	Efficient Self-Sorting of a Racemic Tetra-Urea Calix[4]Pyrrole into a Single Heterodimeric Capsule. Organic Letters, 2010, 12, 1740-1743.	4.6	27
125	The RulVî€O-catalyzed sulfoxidation: a gated mechanism where O to S linkage isomerization switches between different efficiencies. Dalton Transactions, 2010, 39, 3315.	3.3	27
126	Mild formation of cyclic carbonates using Zn(II) complexes based on N2S2-chelating ligands. Polyhedron, 2012, 32, 49-53.	2.2	27

#	Article	IF	CITATIONS
127	Behavior of Ru–bda Waterâ€Oxidation Catalysts in Low Oxidation States. Chemistry - A European Journal, 2018, 24, 12838-12847.	3.3	27
128	Total Synthesis and Initial Structure–Activity Relationships of Longicatenamycin A. ChemMedChem, 2008, 3, 619-626.	3.2	26
129	Practical Approach to Structurally Diverse Monoimine Salts and Nonsymmetrical Metallosalphen Complexes. Organic Letters, 2010, 12, 4592-4595.	4.6	26
130	Access to multinuclear salen complexes using olefin metathesis. Dalton Transactions, 2011, 40, 3352.	3.3	26
131	The High-Intrinsic Dielsâ^'Alder Reactivity of (â^')-Galiellalactone; Generating Four Quaternary Carbon Centers under Mild Conditions. European Journal of Organic Chemistry, 2004, 2004, 2783-2790.	2.4	25
132	Oxo-Bridge Scenario behind Single-Site Water-Oxidation Catalysts. Inorganic Chemistry, 2015, 54, 658-666.	4.0	25
133	Autocatalytic demetalation of a Zn(salphen) complex provoked by unprotected N-heterocycles. Dalton Transactions, 2008, , 734-737.	3.3	24
134	New Dinuclear Ruthenium Complexes: Structure and Oxidative Catalysis. Inorganic Chemistry, 2013, 52, 4335-4345.	4.0	24
135	Cyclometalated heteronuclear Pt/Ag and Pt/Tl complexes: a structural and photophysical study. Dalton Transactions, 2014, 43, 1105-1116.	3.3	24
136	Enantiopure Narrow Biteâ€Angle POP Ligands: Synthesis and Catalytic Performance in Asymmetric Hydroformylations and Hydrogenations. Chemistry - A European Journal, 2014, 20, 15375-15384.	3.3	24
137	Unravelling Molecular Aspects of the Migratory Insertion Step in Cp*Co ^{III} Metallacyclic Systems. Inorganic Chemistry, 2019, 58, 10569-10577.	4.0	24
138	Catalytic Ability of a Cationic Ru(II) Monochloro Complex for the Asymmetric Hydrogenation of Dimethyl Itaconate and Enamides. Inorganic Chemistry, 2006, 45, 2644-2651.	4.0	23
139	Carbon dioxide reduction by mononuclear ruthenium polypyridyl complexes. Physical Chemistry Chemical Physics, 2011, 13, 19480.	2.8	23
140	Establishing the Family of Diruthenium Water Oxidation Catalysts Based on the Bis(bipyridyl)pyrazolate Ligand System. Inorganic Chemistry, 2016, 55, 2508-2521.	4.0	23
141	Water oxidation catalysis with ligand substituted Ru–bpp type complexes. Catalysis Science and Technology, 2016, 6, 5088-5101.	4.1	23
142	Halogen bonding effects on the outcome of reactions at metal centres. Chemical Communications, 2019, 55, 2380-2383.	4.1	23
143	A Third-Generation Bicyclopropylidene: Straightforward Preparation of 15,15′-Bis(hexaspiro[2.0.2.0.0.0.2.0.1.0]pentadecylidene) and aC2v-Symmetric Branched [15]Triangulane. Angewandte Chemie - International Edition, 2000, 39, 2495-2498.	13.8	22
144	Tetracyclopropylmethane: A Unique Hydrocarbon with S4 Symmetry. Angewandte Chemie - International Edition, 2001, 40, 180-183.	13.8	22

#	Article	IF	CITATIONS
145	Synthesis and Computational Studies of Palladium(I) Dimers Pd2X2(PtBu2Ph)2(X = Br, I):Â Phenyl versus Halide Bridging Modes. Organometallics, 2006, 25, 5990-5995.	2.3	22
146	Creation of a Nonsymmetric Dimethanolpyridine Ligand:  A Rare Zn(salphen) Template Effect. Inorganic Chemistry, 2008, 47, 410-412.	4.0	22
147	Anionâ^'Ï€â^'Ï€ Interactions in a Dinuclear M2L2Metallocycle. Inorganic Chemistry, 2008, 47, 10190-10192.	4.0	22
148	Facile Synthesis of Substituted Monoâ€, Diâ€, Tri†and Tetraâ€2†arylâ€2,3†dihydroâ€1 <i>H</i> a€perimidines Journal of Organic Chemistry, 2010, 2010, 4823-4831.	. Europear 2.4	122
149	1,1-P–OP Ligands with P-Stereogenic Phosphino Groups in Asymmetric Hydrogenations and Hydroformylations. Organometallics, 2014, 33, 2960-2963.	2.3	22
150	Ru–bis(pyridine)pyrazolate (bpp)â€Based Waterâ€Oxidation Catalysts Anchored on TiO ₂ : The Importance of the Nature and Position of the Anchoring Group. Chemistry - A European Journal, 2016, 22, 5261-5268.	3.3	22
151	Structural effects of spiroconjugation: crystal structures of spiro[4.4]nonatetraene and spiro[4.4]nona-1,3,7-triene. Journal of Molecular Structure, 1996, 374, 299-304.	3.6	21
152	Stereoselective Preparation of Six Diastereomeric Quatercyclopropanes from Bicyclopropylidene and Some Derivatives. Chemistry - A European Journal, 2007, 13, 167-177.	3.3	21
153	Trapping of a Fourâ€Coordinate Zinc Salphen Complex Inside a Crystal Matrix. Chemistry - A European Journal, 2009, 15, 4233-4237.	3.3	21
154	Ligation of Substituted Pyridines to Metallosalphen Complexes - Crystallographic Characterization of an Unexpected Four-Component Supramolecular Assembly Comprising a Sterically Demanding Ligand. European Journal of Inorganic Chemistry, 2009, 2009, 3562-3568.	2.0	21
155	Substitution Reactions in Dinuclear Ru-Hbpp Complexes: an Evaluation of Through-Space Interactions. Inorganic Chemistry, 2012, 51, 1889-1901.	4.0	21
156	A Million Turnover Molecular Anode for Catalytic Water Oxidation. Angewandte Chemie, 2016, 128, 15608-15612.	2.0	21
157	New Vistas in Transmetalation with Discrete "AgCF 3 ―Species: Implications in Pdâ€Mediated Trifluoromethylation Reactions. Chemistry - A European Journal, 2018, 24, 11895-11898.	3.3	21
158	Exploring the Role of Coinage Metalates in Trifluoromethylation: A Combined Experimental and Theoretical Study. Chemistry - A European Journal, 2019, 25, 9390-9394.	3.3	21
159	New Synthetic Routes toward Enantiopure Nitrogen Donor Ligands. Journal of Organic Chemistry, 2006, 71, 9283-9290.	3.2	20
160	Chemical, Electrochemical, and Photochemical Catalytic Oxidation of Water to Dioxygen with Mononuclear Ruthenium Complexes. ChemSusChem, 2011, 4, 197-207.	6.8	20
161	Molecular ruthenium complexes anchored on magnetic nanoparticles that act as powerful and magnetically recyclable stereospecific epoxidation catalysts. Catalysis Science and Technology, 2013, 3, 706-714.	4.1	20
162	Nickel(II) and Palladium(II) Complexes of the Small-Bite-Angle P-Stereogenic Diphosphine Ligand MaxPHOS and Its Monosulfide. Organometallics, 2014, 33, 692-701.	2.3	20

#	Article	IF	CITATIONS
163	Electrochemically Driven Water Oxidation by a Highly Active Rutheniumâ€Based Catalyst. ChemSusChem, 2019, 12, 2251-2262.	6.8	20
164	Crystal Structure of a Peptide-Steroid Macrocycle—Intramolecular Attraction between Steroids and Peptidicl̂²(I) Turns. Angewandte Chemie - International Edition, 1998, 37, 2727-2729.	13.8	19
165	Ab initio structure determination of norbornene from powder diffraction data using molecular packing analysis method. Chemical Communications, 1998, , 2751-2752.	4.1	19
166	Fine Tuning of MLCT States in New Mononuclear Complexes of Ruthenium(II) Containing Tris(1-pyrazolyl)methane, 2,2?-Bipyridine and Aromatic Nitrogen Heterocycles. European Journal of Inorganic Chemistry, 2005, 2005, 272-277.	2.0	19
167	Isomeric Molecular Rectangles Resulting from Self-Assembly of Dicopper Complexes of Macrocyclic Ligands. Inorganic Chemistry, 2006, 45, 2501-2508.	4.0	19
168	Analysis of the Active Species Responsible for Water Oxidation Using a Pentanuclear Fe Complex. IScience, 2020, 23, 101378.	4.1	19
169	Cationic Rhodium (I) Complexes of N-Phosphino-tert-butylsulfinamide Ligands: Synthesis, Structure, and Coordination Modes. Organometallics, 2009, 28, 480-487.	2.3	18
170	Dimetallic Activation of Dihydrogen Phosphate by Zn(salphen) Chromophores. European Journal of Inorganic Chemistry, 2010, 2010, 4611-4616.	2.0	18
171	Capturing Elusive Cobaltacycle Intermediates: A Realâ€Time Snapshot of the Cp*Co ^{III} â€Catalyzed Oxidative Alkyne Annulation. Angewandte Chemie, 2017, 129, 12305-12309.	2.0	18
172	Synthesis, Structure, and Ammonia Oxidation Catalytic Activity of Ru-NH ₃ Complexes Containing Multidentate Polypyridyl Ligands. Inorganic Chemistry, 2021, 60, 13929-13940.	4.0	18
173	The crystal and molecular structure of 2,7-di-tert-butyl-4,5,9,10-tetraphenylbenzo[1,2,:4,5]dicyclobutadiene: an exceptionally long C–C aromatic bond. Chemical Communications, 1999, , 319-320.	4.1	17
174	Understanding Electronic Ligand Perturbation over Successive Metalâ€Based Redox Potentials in Mononuclear Ruthenium†Aqua Complexes. ChemPlusChem, 2013, 78, 235-243.	2.8	17
175	Synthesis and Isomeric Analysis of Ru ^{II} Complexes Bearing Pentadentate Scaffolds. Inorganic Chemistry, 2016, 55, 11216-11229.	4.0	17
176	Effect of Mechanochemical Recrystallization on the Thermal Hysteresis of 1D Fe ^{II} -triazole Spin Crossover Polymers. Inorganic Chemistry, 2020, 59, 7953-7959.	4.0	17
177	Synthesis and characterization of a new enantiopure hydroxylated phosphine, its rhodium(I) and (III) complexes and their performance in catalytic carbonylation. Tetrahedron: Asymmetry, 2003, 14, 2529-2538.	1.8	16
178	Synthesis, Properties and Molecular Structure of [Ru(tpm)(bpy)(CH3CN)](PF6)2 (tpm =) Tj ETQq0 0 0 rgBT /Over Ruthenium(II). European Journal of Inorganic Chemistry, 2005, 2005, 3019-3023.	rlock 10 Tf 2.0	50 147 Td (16
179	Synthesis, Characterization, Reactivity, and Linkage Isomerization of Ru(Cl) ₂ (L)(DMSO) ₂ Complexes. European Journal of Inorganic Chemistry, 2013, 2013, 232-240.	2.0	16
180	Single Site Isomeric Ru WOCs with an Electron-Withdrawing Group: Synthesis, Electrochemical Characterization, and Reactivity. Inorganic Chemistry, 2015, 54, 11948-11957.	4.0	16

#	Article	IF	CITATIONS
181	Hydrogenative Carbon Dioxide Reduction Catalyzed by Mononuclear Ruthenium Polypyridyl Complexes: Discerning between Electronic and Steric Effects. ACS Catalysis, 2017, 7, 5932-5940.	11.2	16
182	Syntheses, characterisation and solid-state study of alkali and ammonium BArF salts. RSC Advances, 2017, 7, 32833-32841.	3.6	16
183	Synthesis, Characterization, and Water Oxidation Activity of Isomeric Ru Complexes. Inorganic Chemistry, 2021, 60, 5791-5803.	4.0	16
184	Room-Temperature-Stable Magnesium Electride via Ni(II) Reduction. Journal of the American Chemical Society, 2022, 144, 13109-13117.	13.7	16
185	Synthesis and anthelmintic activity of 7-substituted 3,4a-dimethyl-4a,5a,8a,8b-tetrahydro-6H-pyrrolo[3′,4′:4,5]furo[3,2-b]pyridine-6,8(7H)-diones. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 2375-2379.	2.2	15
186	Asymmetric Synthesis of Homoallylic Alcohols Featuring Vicinal Tetrasubstituted Carbon Centers via Dual Pd/Photoredox Catalysis. Organic Letters, 2021, 23, 4447-4451.	4.6	15
187	Stereodiscrimination in Phosphanylthiolato Nickel(II) Complexes. European Journal of Inorganic Chemistry, 2003, 2003, 4147-4151.	2.0	14
188	Synthesis and anthelmintic activity of cyclohexadepsipeptides with (S,S,S,R,S,R)-configuration. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 3285-3288.	2.2	14
189	Chiral and Stable Palladium(0) Complexes of Polyunsaturated Aza-macrocyclic Ligands:  Synthesis and Structural Analysis. Organometallics, 2006, 25, 5612-5620.	2.3	14
190	Synthesis and anthelmintic activity of substituted (R)-phenyllactic acid containing cyclohexadepsipeptides. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 4410-4415.	2.2	14
191	A Short Desymmetrization Protocol for the Coordination Environment in Bis-salphen Scaffolds. Journal of Organic Chemistry, 2011, 76, 5404-5412.	3.2	14
192	Telomerisation of Butaâ€1,3â€diene and Methanol: Superiority of Chromanylâ€Type Phosphines in the Dow Process for the Industrial Production of 1â€MOD. Chemistry - A European Journal, 2011, 17, 8922-8928.	3.3	14
193	A Highly Efficient Luminescent Pt ₂ Tl ₂ Chain with a Short Tl ^l –Tl ^l Interaction. Inorganic Chemistry, 2013, 52, 10729-10731.	4.0	14
194	Electrochemically and Photochemically Induced Hydrogen Evolution Catalysis with Cobalt Tetraazamacrocycles Occurs Through Different Pathways. ChemSusChem, 2020, 13, 2745-2752.	6.8	14
195	Structural Analysis of Chiral Complexes of Palladium(0) with 15-Membered Triolefinic Macrocyclic Ligands. Chemistry - A European Journal, 2005, 11, 2689-2697.	3.3	13
196	Access to hybrid supramolecular salen–porphyrin assemblies via a selective in situ transmetalation–metalation self-assembly sequence. Inorganica Chimica Acta, 2009, 362, 1053-1057.	2.4	13
197	Crystallization-Induced Dynamic Resolution of Stereolabile Biaryl Derivatives Involving Supramolecular Interactions. Crystal Growth and Design, 2012, 12, 2719-2723.	3.0	13
198	On the Structure of [K(cryptâ€222)] ⁺ . Helvetica Chimica Acta, 2018, 101, e1800015.	1.6	13

#	Article	IF	Citations
199	Catalytic Oxidation of Water to Dioxygen by Mononuclear Ru Complexes Bearing a 2,6â€Pyridinedicarboxylato Ligand. ChemSusChem, 2019, 12, 1949-1957.	6.8	13
200	Fate of the Molecular Ru–Phosphonate Water Oxidation Catalyst under Turnover Conditions. ACS Catalysis, 2021, 11, 5240-5247.	11.2	13
201	Syntheses, Structures and Redox Properties of New Macrocyclic Triazatriolefinic PdO Complexes and Their Polypyrrole Modified Electrodesâ [*] Application to Heterogeneous Catalytic Suzuki Cross-Coupling Reactions. European Journal of Inorganic Chemistry, 2004, 2004, 1601-1610.	2.0	12
202	Photochemical Rearrangements of Norbornadiene Pauson–Khand Cycloadducts. Angewandte Chemie - International Edition, 2007, 46, 5943-5946.	13.8	12
203	Phosphine–Alkene Ligands as Mechanistic Probes in the Pauson–Khand Reaction. Chemistry - A European Journal, 2010, 16, 8340-8346.	3.3	12
204	Rhodium(I)-Catalyzed $[2+2+2]$ Cycloaddition Reactions of Triacetylenic 15-Membered Aza Macrocycles: A Comparative Structural Study. Organometallics, 2012, 31, 318-326.	2.3	12
205	New Chiral Zinc Complexes: Synthesis, Structure, and Induction of Axial Chirality. Inorganic Chemistry, 2012, 51, 8643-8645.	4.0	12
206	The Trifluoromethyl Anion: Evidence for [K(cryptâ€222)] ⁺ . Helvetica Chimica Acta, 2017, 100, e1700032.	1.6	12
207	Pd/Cu Dualâ€Catalyzed Asymmetric Synthesis of Highly Functional Allâ€Carbon Quaternary Stereocenters from Vinyl Carbonates. Chemistry - A European Journal, 2021, 27, 10107-10114.	3.3	12
208	Synthesis, spectroscopic and electrochemical characterization and molecular structure of polypyridyl ruthenium complexes containing 4,4′-azobis(pyridine). Polyhedron, 2008, 27, 2990-2996.	2.2	11
209	Templated Synthesis and Site-Selective Conversion of Completely Nonsymmetrical Bis-Metallosalphen Complexes. European Journal of Inorganic Chemistry, 2009, 2009, 2467-2471.	2.0	11
210	Synthesis and Structure of Novel Rull - $N\hat{a}_i^c$ - Me Complexes and their Activity Towards Nitrile Hydrolysis: An Examination of Ligand Effects. Australian Journal of Chemistry, 2009, 62, 1675.	0.9	11
211	Carbon Dioxide Reduction Catalyzed by Dinuclear Ruthenium Polypyridyl Complexes. ChemCatChem, 2013, 5, 3897-3903.	3.7	11
212	Electrochemical and Resonance Raman Spectroscopic Studies of Waterâ€Oxidizing Ruthenium Terpyridyl–Bipyridyl Complexes. ChemSusChem, 2017, 10, 551-561.	6.8	11
213	Redox-Controlled Molecular Flipper Based on a Chiral Cu Complex. Inorganic Chemistry, 2006, 45, 9643-9645.	4.0	10
214	Di-palladium Complexes with Urea-containing Ligands as Anion Receptors. Supramolecular Chemistry, 2007, 19, 599-611.	1.2	10
215	A calixarene dendron with surface congestion at the first generation. Chemical Communications, 2010, 46, 1044.	4.1	10
216	Allosteric Pâ•O-Based Receptors for Dicarboxylic Acids. Organic Letters, 2011, 13, 3632-3635.	4.6	10

#	Article	IF	Citations
217	Dinuclear Ruthenium Complexes Containing the Hpbl Ligand: Synthesis, Characterization, Linkage Isomerism, and Epoxidation Catalysis. Inorganic Chemistry, 2014, 53, 10394-10402.	4.0	10
218	A Ru-bda Complex with a Dangling Carboxylate Group: Synthesis and Electrochemical Properties. Inorganic Chemistry, 2020, 59, 4443-4452.	4.0	10
219	Isolation and characterization of a new type of $\hat{l}\frac{1}{4}$ -hydroxo-bis-Zn(salphen) assembly. Dalton Transactions, 2010, 39, 8733.	3.3	9
220	<i>N-Benzyl- $<$ i>N-phosphino- $<$ i>tert-butylsulfinamide and Its Coordination Modes with Ir(I), Cu(I), Pd(II), and Pt(II): P,S or P,O?. Organometallics, 2011, 30, 3119-3130.	2.3	9
221	Characterization and performance of electrostatically adsorbed Ru–Hbpp water oxidation catalysts. Catalysis Science and Technology, 2014, 4, 190-199.	4.1	9
222	Ru–Zn Heteropolynuclear Complexes Containing a Dinucleating Bridging Ligand: Synthesis, Structure, and Isomerism. Inorganic Chemistry, 2014, 53, 12407-12415.	4.0	9
223	Novel iminopyridine derivatives: ligands for preparation of Fe(<scp>ii</scp>) and Cu(<scp>ii</scp>) dinuclear complexes. Dalton Transactions, 2016, 45, 3564-3576.	3.3	9
224	Synthesis, Structure, and Redox Properties of a <i>trans</i> Seven-Coordination at High Oxidation States. Inorganic Chemistry, 2018, 57, 1757-1765.	4.0	9
225	Anode Based on a Molecular Ru Water Oxidation Catalyst Covalently Bonded to Polythiophene. ACS Applied Energy Materials, 2021, 4, 9775-9782.	5.1	9
226	2-(Chlorocarbonyl)-2-mesitylketene, a new building block for the synthesis of 4-hydroxy-3-mesityl tetronic acids. Tetrahedron, 2001, 57, 4133-4137.	1.9	8
227	A Bpp-based dinuclear ruthenium photocatalyst for visible light-driven oxidation reactions. Catalysis Science and Technology, 2019, 9, 6760-6768.	4.1	8
228	Dioxirane mediated asymmetric epoxidations: stereochemical studies via isotopic labeling. Organic and Biomolecular Chemistry, 2008, 6, 2276.	2.8	7
229	A broad view on the complexity involved in water oxidation catalysis based on Ru–bpn complexes. Dalton Transactions, 2020, 49, 17375-17387.	3.3	7
230	Cascade Transformation of Carbon Dioxide and Alkyne-1, <i>n</i> -diols into Densely Substituted Cyclic Carbonates. ACS Catalysis, 2022, 12, 2854-2860.	11.2	7
231	Structural Aspects of Cyclopropyl Homoconjugation: Experimental Studies and Ab Initio Calculations. Liebigs Annalen, 1997, 1997, 1429-1435.	0.8	6
232	Synthesis and Characterization of a New Chiral Phosphinothiol Ligand Derived from (â^')-Menthone and Its Palladium(II) and Platinum(II) Complexes. Organometallics, 2003, 22, 3432-3438.	2.3	6
233	Nonelectrochemical Synthesis, Crystal Structure, and Physical Properties of the Radical Salt [ET] < sub>2[CuCl ₄] (ET = Bis(ethylenedithio)tetrathiafulvalene). Inorganic Chemistry, 2013, 52, 14376-14381.	4.0	6
234	Structural Preferences in Phosphanylthiolato Platinum(II) Complexes. ChemistryOpen, 2016, 5, 51-59.	1.9	6

#	Article	IF	CITATIONS
235	Mononuclear ruthenium compounds bearing N-donor and N-heterocyclic carbene ligands: structure and oxidative catalysis. Dalton Transactions, 2017, 46, 2829-2843.	3.3	6
236	Synthesis, Electrochemical Characterization, and Water Oxidation Chemistry of Ru Complexes Containing the 2,6-Pyridinedicarboxylato Ligand. Inorganic Chemistry, 2020, 59, 11432-11441.	4.0	6
237	Formation of Unusual Trinuclear Assemblies: Scope and Mechanism of Zn(salphen)-Templated Activation of Pyridine-Alcohol Substrates. European Journal of Inorganic Chemistry, 2009, 2009, 5307-5318.	2.0	5
238	Di-platinum complexes containing thiolato-urea ligands: structural and anion binding studies. Dalton Transactions, 2009, , 2974.	3.3	5
239	Architectures in Copper Metal-Organic Frameworks from 4-Substituted Anionic 1,2,4-Triazoles. European Journal of Inorganic Chemistry, 2014, 2014, 3125-3132.	2.0	5
240	Spontaneous Magnetization in Homometallic $\hat{l}\frac{1}{4}$ ₆ -Oxalate Coordination Polymers. Inorganic Chemistry, 2015, 54, 4678-4687.	4.0	5
241	Assembly of unusual Zn-cluster compounds based on pyridinealcohol platforms. Dalton Transactions, 2009, , 7368.	3.3	4
242	Weakly Coordinated Cobaltacycles: Trapping Catalytically Competent Intermediates in Cp*Co III Catalysis. Angewandte Chemie, 2020, 132, 6298-6302.	2.0	3
243	Electrocatalytic water oxidation from a mixed linker MOF based on NU-1000 with an integrated ruthenium-based metallo-linker. Materials Advances, 2022, 3, 4227-4234.	5.4	3
244	Synthesis and structure of a chiral dinuclear palladium(0) complex with a 30-membered hexaolefinic macrocyclic ligand. Journal of Organometallic Chemistry, 2007, 692, 2997-3004.	1.8	2
245	Back Cover: Effective Chirogenesis in a Bis(metallosalphen) Complex through Host-Guest Binding with Carboxylic Acids (Angew. Chem. Int. Ed. 3/2011). Angewandte Chemie - International Edition, 2011, 50, 778-778.	13.8	2
246	Consecutive Ligandâ€Based Electron Transfer in New Molecular Copperâ€Based Water Oxidation Catalysts. Angewandte Chemie, 2021, 133, 18787-18792.	2.0	2
247	Solvent Effect on the Spin State of an Iron(II)â€Triazole Trimer. European Journal of Inorganic Chemistry, 2021, 2021, 112-116.	2.0	2
248	Domino Synthesis of Bicyclic 3,5-Anhydro Furanose Mimics Using a Binary Al(III) Complex/Halide Catalyst. ACS Catalysis, 2022, 12, 5464-5469.	11.2	2
249	Efficient Asymmetric Synthesis of \hat{I}^2 -Amino Acid BAY 10-8888/PLD-118, a Novel Antifungal for the Treatment of Yeast Infections ChemInform, 2003, 34, no.	0.0	1
250	Structural Preferences in Phosphanylthiolato Platinum(II) Complexes. ChemistryOpen, 2016, 5, 2-2.	1.9	1
251	Tuning diastereoisomerism in platinum(ii) phosphino- and aminothiolato hydrido complexes. New Journal of Chemistry, 2017, 41, 3015-3028.	2.8	1
252	Solution-Phase Parallel Synthesis of 4,6-Diaryl-pyrimidine-2-ylamines and 2-Amino-5,5-disubstituted-3,5-dihydro-imidazol-4-ones via a Rearrangement ChemInform, 2003, 34, no.	0.0	0

#	Article	IF	CITATIONS
253	Synthesis of Nitrogen-Containing 15-Membered Triacetylenic Macrocycles. Stable Complex with Palladium(0) ChemInform, 2004, 35, no.	0.0	0
254	Tetraalkynyl Calix[4]arenes with Advanced NLO Properties ChemInform, 2005, 36, no.	0.0	0
255	Au(I)-arene interactions. Acta Crystallographica Section A: Foundations and Advances, 2005, 61, c335-c335.	0.3	O