Anvar A Zakhidov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9088119/publications.pdf

Version: 2024-02-01

156 papers

23,329 citations

47409 49 h-index 139 g-index

156 all docs

156 docs citations

156 times ranked 28044 citing authors

#	Article	IF	CITATIONS
1	An improved model for describing the net carrier recombination rate in semiconductor devices. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	2
2	More Powerful Twistron Carbon Nanotube Yarn Mechanical Energy Harvesters. Advanced Materials, 2022, 34, e2201826.	11.1	20
3	Nanophotonics for Perovskite Solar Cells. Advanced Photonics Research, 2022, 3, .	1.7	15
4	Quasi-CW Lasing from Directly Patterned and Encapsulated Perovskite Cavity at 260 K. ACS Photonics, 2022, 9, 1984-1991.	3.2	12
5	Reconfigurable Perovskite LEC: Effects of Ionic Additives and Dual Function Devices. Advanced Optical Materials, 2021, 9, 2001715.	3.6	33
6	Enhanced Thermoelectric Properties of Poly(3-hexylthiophene) through the Incorporation of Aligned Carbon Nanotube Forest and Chemical Treatments. ACS Omega, 2021, 6, 1073-1082.	1.6	8
7	Reconfigurable Perovskite LEC: Effects of Ionic Additives and Dual Function Devices (Advanced Optical) Tj ETQq1	1 0.78431 3.6	4 rgBT /Ove
8	Pure Blue Electroluminescence by Differentiated Ion Motion in a Single Layer Perovskite Device. Advanced Functional Materials, 2021, 31, 2102006.	7.8	17
9	Pure Blue Electroluminescence: Pure Blue Electroluminescence by Differentiated Ion Motion in a Single Layer Perovskite Device (Adv. Funct. Mater. 31/2021). Advanced Functional Materials, 2021, 31, 2170228.	7.8	O
10	Leveraging a Stable Perovskite Composite to Satisfy Blue Electroluminescence Standards. , 2021, 3, 1357-1362.		6
11	Surface Energy-Driven Preferential Grain Growth of Metal Halide Perovskites: Effects of Nanoimprint Lithography Beyond Direct Patterning. ACS Applied Materials & Samp; Interfaces, 2021, 13, 5368-5378.	4.0	26
12	Bright Single-Layer Perovskite Host–lonic Guest Light-Emitting Electrochemical Cells. Chemistry of Materials, 2021, 33, 1201-1212.	3.2	15
13	Ionically Gated Small-Molecule OPV: Interfacial Doping of Charge Collector and Transport Layer. ACS Applied Materials & Doping of Charge Collector and Transport Layer. ACS Applied Materials & Doping of Charge Collector and Transport Layer. ACS Applied Materials & Doping of Charge Collector and Transport Layer. ACS Applied Materials & Doping of Charge Collector and Transport Layer. ACS Applied Materials & Doping of Charge Collector and Transport Layer. ACS Applied Materials & Doping of Charge Collector and Transport Layer. ACS Applied Materials & Doping of Charge Collector and Transport Layer. ACS Applied Materials & Doping of Charge Collector and Transport Layer. ACS Applied Materials & Doping of Charge Collector and Transport Layer. ACS Applied Materials & Doping of Charge Collector and Transport Layer. ACS Applied Materials & Doping of Charge Collector and Transport Layer. ACS Applied Materials & Doping of Charge Collector and Transport Layer. ACS Applied Materials & Doping of Charge Collector and Transport Charge Collector and Transport Charge Cha	4.0	3
14	Investigation of degradation processes in perovskite under the influence of external factors. Kompleksnoe Ispol \tilde{E}^1 zovanie Mineral \hat{E}^1 nogo Syr $\hat{E}^1\tilde{A}$ ¢/Complex Use of Mineral Resources/Mineraldik Shikisattardy Keshendi Paidalanu, 2021, 3, 19-24.	0.1	0
15	Enhanced terahertz emission from imprinted halide perovskite nanostructures. Nanophotonics, 2020, 9, 187-194.	2.9	16
16	Engineering the Charge Transport Properties of Resonant Silicon Nanoparticles in Perovskite Solar Cells. Energy Technology, 2020, 8, 1900877.	1.8	12
17	Suppression of Electric Field-Induced Segregation in Sky-Blue Perovskite Light-Emitting Electrochemical Cells. Nanomaterials, 2020, 10, 1937.	1.9	14
18	Improvement of methylammonium lead iodide based perovskite solar cells by phosphorus doped silicon nanoparticles. AIP Conference Proceedings, 2020, , .	0.3	0

#	Article	IF	CITATIONS
19	Polymer modification of perovskite solar cells to increase open-circuit voltage. AIP Conference Proceedings, 2020, , .	0.3	O
20	Enhanced Operational Stability of Perovskite Lightâ€Emitting Electrochemical Cells Leveraging Ionic Additives. Advanced Optical Materials, 2020, 8, 2000226.	3.6	28
21	Room-Temperature Lasing from Mie-Resonant Nonplasmonic Nanoparticles. ACS Nano, 2020, 14, 8149-8156.	7.3	105
22	Remote heteroepitaxy of GaN microrod heterostructures for deformable light-emitting diodes and wafer recycle. Science Advances, 2020, 6, eaaz5180.	4.7	80
23	Active Perovskite Hyperbolic Metasurface. ACS Photonics, 2020, 7, 1754-1761.	3.2	27
24	Perovskite Lightâ€Emitting Electrochemical Cells: Enhanced Operational Stability of Perovskite Lightâ€Emitting Electrochemical Cells Leveraging Ionic Additives (Advanced Optical Materials 13/2020). Advanced Optical Materials, 2020, 8, 2070052.	3.6	1
25	Perovskite nanowire lasers on low-refractive-index conductive substrate for high-Q and low-threshold operation. Nanophotonics, 2020, 9, 3977-3984.	2.9	28
26	Silver Nanowires on Carbon Nanotube Aerogel Sheets for Flexible, Transparent Electrodes. ACS Applied Materials & Diterfaces, 2019, 11, 32235-32243.	4.0	22
27	Electronic structure of CsPbBr _{3â^'x} Cl _x perovskites: synthesis, experimental characterization, and DFT simulations. Physical Chemistry Chemical Physics, 2019, 21, 18930-18938.	1.3	68
28	Bright and Effectual Perovskite Light-Emitting Electrochemical Cells Leveraging Ionic Additives. ACS Energy Letters, 2019, 4, 2922-2928.	8.8	47
29	Single-Mode Lasing from Imprinted Halide-Perovskite Microdisks. ACS Nano, 2019, 13, 4140-4147.	7.3	134
30	Halideâ€Perovskite Resonant Nanophotonics. Advanced Optical Materials, 2019, 7, 1800784.	3.6	146
31	Light-emitting perovskite solar cell with segregation enhanced self doping. Applied Surface Science, 2019, 476, 486-492.	3.1	19
32	A Few-Minute Synthesis of CsPbBr ₃ Nanolasers with a High Quality Factor by Spraying at Ambient Conditions. ACS Applied Materials & Samp; Interfaces, 2019, 11, 1040-1048.	4.0	58
33	Room-Temperature Continuous-Wave Operation of Organometal Halide Perovskite Lasers. ACS Nano, 2018, 12, 10968-10976.	7.3	140
34	Continuous-wave operation in directly patterned perovskite distributed feedback light source at room temperature. Optics Letters, 2018, 43, 611.	1.7	27
35	Tunable Hybrid Fano Resonances in Halide Perovskite Nanoparticles. Nano Letters, 2018, 18, 5522-5529.	4.5	94
36	Flexible Thermoelectric Polymer Composites Based on a Carbon Nanotubes Forest. Advanced Functional Materials, 2018, 28, 1801246.	7.8	37

3

#	Article	IF	Citations
37	Biophysical interactions between pancreatic cancer cells and pristine carbon nanotube substrates: Potential application for pancreatic cancer tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1637-1644.	1.6	17
38	Evacuated tube solar collector with multifunctional absorber layers. Solar Energy, 2017, 146, 342-350.	2.9	57
39	Multifold Emission Enhancement in Nanoimprinted Hybrid Perovskite Metasurfaces. ACS Photonics, 2017, 4, 728-735.	3.2	131
40	Tunable organic PV parallel tandem with ionic gating. Journal of Renewable and Sustainable Energy, 2017, 9, .	0.8	6
41	Dual use of carbon nanotube selective coatings in evacuated tube solar collectors. Carbon, 2017, 119, 133-141.	5.4	17
42	Pristine carbon nanotube scaffolds for the growth of chondrocytes. Journal of Materials Chemistry B, 2017, 5, 8178-8182.	2.9	13
43	Solar Thermal Collector With Multifunctional Absorber Layers. , 2017, , .		0
44	Tuning Color Temperature of White OLEDs in Parallel Tandems. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700283.	0.8	6
45	Nanoimprinted perovskite metasurface for enhanced photoluminescence. Optics Express, 2017, 25, A1162.	1.7	35
46	Carbon Nanotube Dry Spinnable Sheets for Solar Selective Coatings by Lamination. Eurasian Chemico-Technological Journal, 2017, 18, 241.	0.3	2
47	Nanoimprinted Perovskite Nanograting Photodetector with Improved Efficiency. ACS Nano, 2016, 10, 10921-10928.	7.3	168
48	Upper Critical Field and Kondo Effects in Fe(Te0.9Se0.1) Thin Films by Pulsed Field Measurements. Scientific Reports, 2016, 6, 21469.	1.6	14
49	Evacuated tube solar collectors integrated with phase change materials. Solar Energy, 2016, 129, 10-19.	2.9	203
50	Large Molecular Weight Polymer Solar Cells with Strong Chain Alignment Created by Nanoimprint Lithography. ACS Applied Materials & Samp; Interfaces, 2016, 8, 7300-7307.	4.0	20
51	Tunable color parallel tandem organic light emitting devices with carbon nanotube and metallic sheet interlayers. Journal of Applied Physics, 2015, 118, 194502.	1.1	4
52	Microwave conductance properties of aligned multiwall carbon nanotube textile sheets. Journal of Applied Physics, 2015, 118, 014308.	1.1	1
53	Effect of high-pressure fluorination on electrical properties of multi-walled carbon nanotubes sheet. EPJ Applied Physics, 2015, 72, 20403.	0.3	2
54	Exciton versus Free Carrier Photogeneration in Organometal Trihalide Perovskites Probed by Broadband Ultrafast Polarization Memory Dynamics. Physical Review Letters, 2015, 114, 116601.	2.9	113

#	Article	IF	CITATIONS
55	Optical, Electrical, and Electromechanical Properties of Hybrid Graphene/Carbon Nanotube Films. Advanced Materials, 2015, 27, 3053-3059.	11.1	114
56	Microwave conductance of aligned multiwall carbon nanotube textile sheets. Applied Physics Letters, 2014, 105, 263105.	1.5	2
57	White light emission from a blue polymer light emitting diode combined with <scp>YAG</scp> : <scp>C</scp> e ³⁺ nanoparticles. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 651-655.	0.8	5
58	Controlling the Optical, Electrical and Chemical Properties of Carbon Inverse Opal by Nitrogen Doping. Advanced Functional Materials, 2014, 24, 2612-2619.	7.8	22
59	Flexible, Ultralight, Porous Superconducting Yarns Containing Shellâ€Core Magnesium Diboride–Carbon Nanotube Nanofibers. Advanced Materials, 2014, 26, 7510-7515.	11.1	17
60	Perovskite Based Hybrid Solar Cells with Transparent Carbon Nanotube electrodes. Materials Research Society Symposia Proceedings, 2014, 1667, 20.	0.1	3
61	Ambient Method for the Production of an Ionically Gated Carbon Nanotube Common Cathode in Tandem Organic Solar Cells. Journal of Visualized Experiments, 2014, , e52380.	0.2	3
62	Efficient Low Bandgap Polymer Solar Cell with Ordered Heterojunction Defined by Nanoimprint Lithography. ACS Applied Materials & Samp; Interfaces, 2014, 6, 19282-19287.	4.0	22
63	Effects of nanostructure geometry on nanoimprinted polymer photovoltaics. Nanoscale, 2014, 6, 7576-7584.	2.8	20
64	Semi-transparent polymer light emitting diodes with multiwall carbon nanotubes as cathodes. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2828-2832.	0.8	4
65	Nonlinear optical properties of boron doped single-walled carbon nanotubes. Nanoscale, 2013, 5, 7271.	2.8	65
66	Phenothiazine Semiconducting Polymer for Lightâ€Emitting Diodes. Macromolecular Chemistry and Physics, 2013, 214, 572-577.	1.1	14
67	Weavable dye sensitized solar cells exploiting carbon nanotube yarns. Applied Physics Letters, 2013, 102, .	1.5	12
68	Effects of nanostructure geometry on polymer chain alignment and device performance in nanoimprinted polymer solar cell. Proceedings of SPIE, $2013, \ldots$	0.8	3
69	OPV Tandems with CNTS: Why Are Parallel Connections Better Than Series Connections. NATO Science for Peace and Security Series B: Physics and Biophysics, 2013, , 179-204.	0.2	1
70	Synthesis and Characterization of a Novel Symmetrical Sulfone-Substituted Polyphenylene Vinylene (SO ₂ EH-PPV) for Applications in Light Emitting Devices. Journal of Physical Chemistry B, 2013, 117, 4442-4448.	1.2	17
71	Superconducting properties of FeSexTe1â°'xthin film with a composition close to antiferromagnetic ordering. Superconductor Science and Technology, 2013, 26, 112001.	1.8	6
72	Electrochemically gated organic photovoltaic with tunable carbon nanotube cathodes. Applied Physics Letters, 2013, 103, .	1.5	6

#	Article	IF	Citations
73	Superconductivity in an Inhomogeneous Bundle of Metallic and Semiconducting Nanotubes. Journal of Nanotechnology, 2013, 2013, 1-6.	1.5	0
74	Nanoimprinted Polymer Solar Cell. ACS Nano, 2012, 6, 2877-2892.	7.3	152
75	Combined alternative electrodes for semi-transparent and ITO-free small molecule organic solar cells. Organic Electronics, 2012, 13, 2422-2428.	1.4	24
76	Carbon nanotube/graphene nanocomposite as efficient counter electrodes in dye-sensitized solar cells. Nanotechnology, 2012, 23, 085201.	1.3	135
77	Semi-transparent small molecule organic solar cells with laminated free-standing carbon nanotube top electrodes. Solar Energy Materials and Solar Cells, 2012, 96, 244-250.	3.0	100
78	Photoinduced Optical Transparency in Dye-Sensitized Solar Cells Containing Graphene Nanoribbons. Journal of Physical Chemistry C, 2011, 115, 25125-25131.	1.5	35
79	Structural Model for Dry-Drawing of Sheets and Yarns from Carbon Nanotube Forests. ACS Nano, 2011, 5, 985-993.	7.3	116
80	Biscrolling Nanotube Sheets and Functional Guests into Yarns. Science, 2011, 331, 51-55.	6.0	338
81	Light Propagation in Liquid Crystal Infiltrated Two-Dimensional Photonic Crystal at a High-Order Photonic Band. Molecular Crystals and Liquid Crystals, 2011, 545, 67/[1291]-76/[1300].	0.4	4
82	Aerosol-Synthesized SWCNT Networks with Tunable Conductivity and Transparency by a Dry Transfer Technique. Nano Letters, 2010, 10, 4349-4355.	4.5	384
83	Electron field emission from transparent multiwalled carbon nanotube sheets for inverted field emission displays. Carbon, 2010, 48, 41-46.	5.4	123
84	Nanoimprinted P3HT/C60 solar cells optimized by oblique deposition of C60. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C6M104-C6M107.	0.6	13
85	Structure and process-dependent properties of solid-state spun carbon nanotube yarns. Journal of Physics Condensed Matter, 2010, 22, 334221.	0.7	51
86	Hole mobility enhancement by chain alignment in nanoimprinted poly(3-hexylthiophene) nanogratings for organic electronics. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C6M63-C6M67.	0.6	28
87	Harvesting Waste Thermal Energy Using a Carbon-Nanotube-Based Thermo-Electrochemical Cell. Nano Letters, 2010, 10, 838-846.	4.5	431
88	Template synthesis of ordered arrays of mesoporous titania spheres. Chemical Communications, 2010, 46, 1872-1874.	2.2	59
89	Electrochemically Tuned Properties for Electrolyteâ€Free Carbon Nanotube Sheets. Advanced Functional Materials, 2009, 19, 2266-2272.	7.8	27
90	Giant-Stroke, Superelastic Carbon Nanotube Aerogel Muscles. Science, 2009, 323, 1575-1578.	6.0	518

#	Article	IF	CITATIONS
91	Multiwalled carbon nanotube sheets as transparent electrodes in high brightness organic light-emitting diodes. Applied Physics Letters, 2008, 93, .	1.5	84
92	Imprinted large-scale high density polymer nanopillars for organic solar cells. Journal of Vacuum Science & Technology B, 2008, 26, 2562-2566.	1.3	97
93	Robust cell migration and neuronal growth on pristine carbon nanotube sheets and yarns. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 1245-1261.	1.9	154
94	PbSe nanocrystal/conducting polymer solar cells with an infrared response to 2 micron. Journal of Materials Research, 2007, 22, 2204-2210.	1.2	102
95	Transparent carbon nanotube sheets as 3-D charge collectors in organic solar cells. Solar Energy Materials and Solar Cells, 2007, 91, 416-419.	3.0	119
96	Thermal transport in MWCNT sheets and yarns. Carbon, 2007, 45, 2880-2888.	5.4	179
97	Multifunctional carbon nanotube yarns and transparent sheets: Fabrication, properties, and applications. Physica B: Condensed Matter, 2007, 394, 339-343.	1.3	116
98	Superconductivity in Pb inverse opal. Physica C: Superconductivity and Its Applications, 2007, 453, 15-23.	0.6	26
99	Thermal properties of carbon inverse opal photonic crystals. Journal of Luminescence, 2007, 125, 11-17.	1.5	11
100	Nanocomposite solar cells based on conjugated polymer / PbSe quantum dot. , 2005, , .		4
101	Cathodoluminescence and electroluminescence from multi-layered organic structures induced by field electron emission from carbon nanotubes. , 2005, , .		0
102	Strong, Transparent, Multifunctional, Carbon Nanotube Sheets. Science, 2005, 309, 1215-1219.	6.0	1,581
103	Cathodoluminescence from organic bilayer induced by field electron emission of carbon nanotubes. Synthetic Metals, 2005, 155, 258-261.	2.1	1
104	Temperature and Time Dependence of Heat Treatment of RR-P3HT/PCBM Solar Cell. Synthetic Metals, 2005, 154, 41-44.	2.1	48
105	Multilayer encapsulation of plastic photovoltaic devices. Synthetic Metals, 2005, 155, 332-335.	2.1	34
106	Optimization of postproduction heat treatment for plastic solar cells. , 2004, 5520, 256.		5
107	Properties of Abrikosov lattices as photonic crystals. Physical Review B, 2004, 70, .	1.1	43
108	High Efficiency P3HT/PCBM Solar Cell. Materials Research Society Symposia Proceedings, 2004, 836, L3.2.1.	0.1	3

#	Article	IF	CITATIONS
109	Inverse gold photonic crystals and conjugated polymer coated opals for functional materials. Physica B: Condensed Matter, 2003, 338, 165-170.	1.3	6
110	Electromagnetic field structure and quenching in one-dimensional photonic crystals., 2003, 5065, 97.		6
111	Optical characteristics of SiO2 photonic band-gap crystal with ferroelectric perovskite oxide. Applied Physics Letters, 2002, 81, 4440-4442.	1.5	24
112	Excitations in opal photonic crystals infiltrated with polarizable media., 2002,,.		0
113	Tunable, Gap-State Lasing in Switchable Directions for Opal Photonic Crystals. Advanced Functional Materials, 2002, 12, 21.	7.8	179
114	Carbon Nanotubesthe Route Toward Applications. Science, 2002, 297, 787-792.	6.0	9,458
115	Electro-optic Behavior of Liquid-Crystal-Filled Silica Opal Photonic Crystals: Effect of Liquid-Crystal Alignment. Physical Review Letters, 2001, 86, 4052-4055.	2.9	237
116	Three-dimensionally periodic conductive nanostructures: network versus cermet topologies for metallic PBG. Synthetic Metals, 2001, 116, 419-426.	2.1	18
117	Metal Sphere Photonic Crystals by Nanomolding. Journal of the American Chemical Society, 2001, 123, 763-764.	6.6	51
118	Electrodeposition of Three-Dimensionally Periodic Metal Meshes and Spheres. Materials Research Society Symposia Proceedings, 2000, 636, 9161.	0.1	0
119	Negative Poisson's Ratios for Extreme States of Matter. Science, 2000, 288, 2018-2022.	6.0	74
120	Electrical Properties of a Periodic Porous Carbon Replica of Opal. Japanese Journal of Applied Physics, 1999, 38, 4926-4929.	0.8	18
121	Laser-like emission in opal photonic crystals. Optics Communications, 1999, 162, 241-246.	1.0	92
122	Carbon Nanotube Actuators. Science, 1999, 284, 1340-1344.	6.0	2,343
123	CVD synthesis of carbon-based metallic photonic crystals. Scripta Materialia, 1999, 12, 1089-1095.	0.5	16
124	Negative Poisson's ratios as a common feature of cubic metals. Nature, 1998, 392, 362-365.	13.7	635
125	Observation of inhibited spontaneous emission and stimulated emission of rhodamine 6G in polymer replica of synthetic opal. Applied Physics Letters, 1998, 73, 3506-3508.	1.5	137
126	Carbon Structures with Three-Dimensional Periodicity at Optical Wavelengths., 1998, 282, 897-901.		1,005

#	Article	IF	Citations
127	The Optical Properties of Porous Opal Crystals Infiltrated with Organic Molecules. Japanese Journal of Applied Physics, 1997, 36, L714-L717.	0.8	73
128	Charge Transfer in Fullerene-Conducting Polymer Compositex: Electronic and Excitonic Properties. Fullerenes, Nanotubes, and Carbon Nanostructures, 1997, 5, 1359-1386.	0.6	5
129	Alkali-metal doping of fullerene-conducting polymer composite: evolution of conductivity and ESR. Synthetic Metals, 1996, 77, 291-297.	2.1	6
130	Electrical and optical properties of molecularly doped conducting polymers. Synthetic Metals, 1996, 78, 301-312.	2.1	27
131	Multiphase superconductivity in OO-PPV/C60 composite doped by alkali metals low-field microwave absorption and SQUID study. Physica C: Superconductivity and Its Applications, 1996, 264, 161-171.	0.6	13
132	Photoconductivity of poly(2,5-diheptyloxy-p-phenylene vinylene) in the air atmosphere: Magnetic-field effect and mechanism of generation and recombination of charge carriers. Physical Review B, 1996, 53, 4498-4508.	1.1	76
133	Organic Photovoltaic Cell with Donor-Acceptor Double Heterojunctions. Japanese Journal of Applied Physics, 1996, 35, L1438-L1441.	0.8	25
134	Granular superconductivity in a conducting polymer-fullerene-alkali metal composite. Physics Letters, Section A: General, Atomic and Solid State Physics, 1995, 205, 317-326.	0.9	23
135	Weak suppression of ferromagnetism in tetrakis(dimethylamino)ethylene-(C60)1â^'x(C70)x. Physical Review B, 1995, 51, 990-995.	1.1	22
136	Persistent Photoconductivity in $f C_{60}$ -Doped Poly(3-alkylthiophene). Japanese Journal of Applied Physics, 1995, 34, L127-L130.	0.8	15
137	Photoluminescence Quenching in Polysilanes by Fullerene Doping and Effective Photoinduced Charge Transfer Depending on Aromatic Side Group. Japanese Journal of Applied Physics, 1995, 34, L141-L144.	0.8	21
138	Novel Photophysical Properties of Fullerene Doped Conducting Polymers. Molecular Crystals and Liquid Crystals, 1994, 255, 197-211.	0.3	12
139	Annealing effect of the superconducting phase of sodium-nitrogen-C60 fulleride, prepared from Na-azide. Solid State Communications, 1994, 92, 547-552.	0.9	9
140	Photoconductivity in C60 doped polyacetylene derivative. Solid State Communications, 1994, 90, 41-45.	0.9	27
141	Novel Optical Properties of Fullerene Doped Conducting Polymers: Scenario of Photo Process, Persistent Photoconductivity and Enhanced Electroluminescence Quenching. Molecular Crystals and Liquid Crystals, 1994, 256, 343-357.	0.3	20
142	Infrared Spectra and Photoinduced Absorption of C60 Doped Polyhexylthiophene. Molecular Crystals and Liquid Crystals, 1994, 256, 927-932.	0.3	11
143	Enhanced photoconductivity of C60 doped poly(3-alkylthiophene). Solid State Communications, 1993, 85, 85-88.	0.9	164
144	Suppression of magnetism of TDAE-(C60)1 \hat{a} °x(C70)x molecular alloys. Solid State Communications, 1993, 87, 1055-1059.	0.9	12

#	Article	IF	CITATIONS
145	Magnetic properties of higher fullerides TDAE-C84, -C90 and -C96. Solid State Communications, 1993, 85, 69-72.	0.9	22
146	Magnetic properties of TDAE-C60and TDAE-C70, where TDAE is tetrakis(dimethylamino)ethylene. Physical Review B, 1993, 47, 7554-7559.	1.1	121
147	Characteristics of buckminsterfullerene doped conducting polymer. Synthetic Metals, 1993, 56, 2991-2996.	2.1	24
148	Difference in Doping Effects of C60and C70in Poly(3-hexylthiophene). Japanese Journal of Applied Physics, 1993, 32, L140-L143.	0.8	16
149	Wavelength Dependence of Junction Characteristics of Poly(3-alkylthiophene)/C60Layer. Japanese Journal of Applied Physics, 1993, 32, L873-L874.	0.8	77
150	Doping effect of buckminsterfullerene in poly(2,5â€dialkoxyâ€pâ€phenylene vinylene). Journal of Applied Physics, 1993, 74, 2860-2865.	1.1	72
151	Electrical Conductivity and ESR Spectrum of Buckminsterfullerene-Doped Poly(3-alkylthiophene). Japanese Journal of Applied Physics, 1992, 31, L890-L893.	0.8	70
152	Doping effect of buckminsterfullerene in conducting polymer: Change of absorption spectrum and quenching of luminescene. Solid State Communications, 1992, 82, 249-252.	0.9	492
153	Weak charge transfer dopants in conducting polymers: Possible sensibilization of photoconductivity. Synthetic Metals, 1991, 43, 3393.	2.1	14
154	Polarons and solitons in composite q-1-d systems: Vectorial separation of charges. Interchain molecular photocell. Synthetic Metals, 1988, 27, A51-A60.	2.1	10
155	Dry Drawn Multiwall Carbon Nanotube Sheet as a Counter Electrode for Dye-Sensitized Solar Cells: Multilayer Optimization. Advanced Materials Research, 0, 622-623, 833-837.	0.3	1
156	Effect of Solvent Annealing on Optical Properties of Perovskite Dualfunctional Devices. Solid State Phenomena, 0, 312, 185-191.	0.3	0