
Junsong Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9088073/publications.pdf Version: 2024-02-01

LUNSONC PAN

#	Article	IF	CITATIONS
1	Deep Learning-Based Segmentation and Quantification of Cucumber Powdery Mildew Using Convolutional Neural Network. Frontiers in Plant Science, 2019, 10, 155.	3.6	146
2	Molecular Isolation of the <i>M</i> Gene Suggests That a Conserved-Residue Conversion Induces the Formation of Bisexual Flowers in Cucumber Plants. Genetics, 2009, 182, 1381-1385.	2.9	139
3	Genome-Wide Mapping of Structural Variations Reveals a Copy Number Variant That Determines Reproductive Morphology in Cucumber. Plant Cell, 2015, 27, 1595-1604.	6.6	125
4	Tuberculate fruit gene <i>Tu</i> encodes a C ₂ H ₂ zinc finger protein that is required for the warty fruit phenotype in cucumber (<i>Cucumis sativus</i> L.). Plant Journal, 2014, 78, 1034-1046.	5.7	83
5	A putative positive feedback regulation mechanism in CsACS2 expression suggests a modified model for sex determination in cucumber (Cucumis sativus L.). Journal of Experimental Botany, 2012, 63, 4475-4484.	4.8	77
6	Identification and mapping of Tril, a homeodomain-leucine zipper gene involved in multicellular trichome initiation in Cucumis sativus. Theoretical and Applied Genetics, 2016, 129, 305-316.	3.6	77
7	Molecularly tagged genes and quantitative trait loci in cucumber with recommendations for QTL nomenclature. Horticulture Research, 2020, 7, 3.	6.3	73
8	STAYGREEN, STAY HEALTHY: a lossâ€ofâ€susceptibility mutation in the <i>STAYGREEN</i> gene provides durable, broadâ€spectrum disease resistances for over 50Âyears of US cucumber production. New Phytologist, 2019, 221, 415-430.	7.3	72
9	Identification and mapping of molecular markers linked to the tuberculate fruit gene in the cucumber (Cucumis sativus L.). Theoretical and Applied Genetics, 2010, 120, 645-654.	3.6	71
10	Loss-of-Function Mutations in CsMLO1 Confer Durable Powdery Mildew Resistance in Cucumber (Cucumis sativus L.). Frontiers in Plant Science, 2015, 6, 1155.	3.6	65
11	Identification and fine mapping of pm5.1: a recessive gene for powdery mildew resistance in cucumber (Cucumis sativus L.). Molecular Breeding, 2015, 35, 1.	2.1	46
12	Photoexcited CRYPTOCHROME 1 Interacts Directly with G-Protein Î ² Subunit AGB1 to Regulate the DNA-Binding Activity of HY5 and Photomorphogenesis in Arabidopsis. Molecular Plant, 2018, 11, 1248-1263.	8.3	46
13	Fine mapping of the uniform immature fruit color gene u in cucumber (Cucumis sativus L.). Euphytica, 2014, 196, 341-348.	1.2	38
14	Identification and mapping of ts (tender spines), a gene involved in soft spine development in Cucumis sativus. Theoretical and Applied Genetics, 2018, 131, 1-12.	3.6	38
15	High-resolution mapping of the dull fruit skin gene D in cucumber (Cucumis sativus L.). Molecular Breeding, 2014, 33, 15-22.	2.1	37
16	Development and fine mapping of three co-dominant SCAR markers linked to the M/m gene in the cucumber plant (Cucumis sativus L.). Theoretical and Applied Genetics, 2008, 117, 1253-1260.	3.6	35
17	A Mutation in CsYL2.1 Encoding a Plastid Isoform of Triose Phosphate Isomerase Leads to Yellow Leaf 2.1 (yl2.1) in Cucumber (Cucumis Sativus L.). International Journal of Molecular Sciences, 2021, 22, 322.	4.1	32
18	Differential Gene Expression Caused by the F and M Loci Provides Insight Into Ethylene-Mediated Female Flower Differentiation in Cucumber. Frontiers in Plant Science, 2018, 9, 1091.	3.6	30

JUNSONG PAN

7

#	Article	IF	CITATIONS
19	Construction of a cucumber genetic linkage map with SRAP markers and location of the genes for lateral branch traits. Science in China Series C: Life Sciences, 2005, 48, 213-220.	1.3	27
20	Transcriptome profiling of trichome-less reveals genes associated with multicellular trichome development in Cucumis sativus. Molecular Genetics and Genomics, 2015, 290, 2007-2018.	2.1	25
21	STAYGREEN (CsSGR) is a candidate for the anthracnose (Colletotrichum orbiculare) resistance locus cla in Gy14 cucumber. Theoretical and Applied Genetics, 2018, 131, 1577-1587.	3.6	21
22	Comprehensive Genomic Analysis and Expression Profiling of the C2H2 Zinc Finger Protein Family under Abiotic Stresses in Cucumber (Cucumis sativus L.). Genes, 2020, 11, 171.	2.4	20
23	The HD-ZIP IV transcription factor Tril regulates fruit spine density through gene dosage effects in cucumber. Journal of Experimental Botany, 2020, 71, 6297-6310.	4.8	18
24	Genome-Wide Identification, Classification and Expression Analysis of the MYB Transcription Factor Family in Petunia. International Journal of Molecular Sciences, 2021, 22, 4838.	4.1	18
25	GLABROUS (CmGL) encodes a HD-ZIP IV transcription factor playing roles in multicellular trichome initiation in melon. Theoretical and Applied Genetics, 2018, 131, 569-579.	3.6	17
26	Genome-Wide Identification and Characterization of the TCP Gene Family in Cucumber (Cucumis) Tj ETQq0 0 0	rgBT /Ovei 2.4	rlock 10 Tf 50
27	Molecular cloning and functional characterization of dihydroflavonol-4-reductase gene from Calibrachoa hybrida. Scientia Horticulturae, 2014, 165, 398-403.	3.6	15
28	Study of micro-trichome (mict) reveals novel connections between transcriptional regulation of multicellular trichome development and specific metabolism in cucumber. Horticulture Research, 2021, 8, 21.	6.3	15
29	QTL molecular marker location of powdery mildew resistance in cucumber (Cucumis sativus L.). Science in China Series C: Life Sciences, 2008, 51, 1003-1008.	1.3	12
30	Ectopic Expression of CsCTR1, a Cucumber CTR-Like Gene, Attenuates Constitutive Ethylene Signaling in an Arabidopsis ctr1-1 Mutant and Expression Pattern Analysis of CsCTR1 in Cucumber (Cucumis sativus). International Journal of Molecular Sciences, 2014, 15, 16331-16350.	4.1	11
31	CsUFO is involved in the formation of flowers and tendrils in cucumber. Theoretical and Applied Genetics, 2021, 134, 2141-2150.	3.6	11
32	A positive feedback loop mediated by <i>CsERF31</i> initiates female cucumber flower development. Plant Physiology, 2021, 186, 1088-1100.	4.8	11
33	A SNP of HD-ZIP I transcription factor leads to distortion of trichome morphology in cucumber (Cucumis sativus L.). BMC Plant Biology, 2021, 21, 182.	3.6	11
34	Expression analysis of dihydroflavonol 4-reductase genes in Petunia hybrida. Genetics and Molecular Research, 2015, 14, 5010-5021.	0.2	8

35	Cucumber CsTRY Negatively Regulates Anthocyanin Biosynthesis and Trichome Formation When Expressed in Tobacco. Frontiers in Plant Science, 2019, 10, 1232.	3.6	8

36 Quantitative trait locus analysis of lateral branch-related traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Science in China Series C: Life Sciences, 2008, 51, 833-841.

Junsong Pan

#	Article	IF	CITATIONS
37	Mapping and identification of CsUp, a gene encoding an Auxilin-like protein, as a putative candidate gene for the upward-pedicel mutation (up) in cucumber. BMC Plant Biology, 2019, 19, 157.	3.6	7
38	Genetic relationship analyses of oil-bearing roses in China using matK sequences. Scientia Horticulturae, 2012, 137, 121-124.	3.6	6
39	Identification and fine mapping of molecular markers closely linked to fruit spines size ss gene in cucumber (Cucumis sativus L.). Euphytica, 2018, 214, 1.	1.2	6
40	Asynchronous meiosis in Cucumis hystrix–cucumber synthetic tetraploids resulting in low male fertility. Crop Journal, 2016, 4, 275-279.	5.2	5
41	<scp>TERMINAL FLOWER</scp> 1 and <scp>TERMINAL FLOWER</scp> 1d respond to temperature and photoperiod signals to inhibit determinate growth in cucumber. Plant, Cell and Environment, 2021, 44, 2580-2592.	5.7	5
42	Construction of a BAC library from cucumber (Cucumis sativus L.) and identification of linkage group specific clones. Progress in Natural Science: Materials International, 2008, 18, 143-147.	4.4	4
43	Mapping and identification of CsSh5.1, a gene encoding a xyloglucan galactosyltransferase required for hypocotyl elongation in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics, 2021, 134, 979-991.	3.6	4
44	Reporter-based screen for Arabidopsis mutants compromised in nonhost resistance. Science Bulletin, 2008, 53, 1027-1034.	9.0	3
45	Efficient Transposition of the Retrotransposon Tnt1 in Cucumber (Cucumis sativus L.). Horticultural Plant Journal, 2018, 4, 111-116.	5.0	2
46	QTL Mapping for Disease Resistance in Cucumber. Compendium of Plant Genomes, 2022, , 81-92.	0.5	1
47	Detection and characterization of <i>Aspergillus tubingensis</i> causing leaf rot disease in pak choi in China. Canadian Journal of Plant Pathology, 2022, 44, 702-708.	1.4	0