Philippe Coussot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9086602/publications.pdf

Version: 2024-02-01

192 papers 10,596 citations

53 h-index 96 g-index

202 all docs 202 docs citations

times ranked

202

5219 citing authors

#	Article	IF	CITATIONS
1	Vapor-sorption Coupled Diffusion in Cellulose Fiber Pile Revealed by Magnetic Resonance Imaging. Physical Review Applied, 2022, 17, .	3.8	7
2	Two-step diffusion in cellular hygroscopic (vascular plant-like) materials. Science Advances, 2022, 8, eabm7830.	10.3	17
3	Welcome to the new editor in chief. Rheologica Acta, 2022, 61, 353-353.	2.4	O
4	Understanding mechanisms of drying of a cellulose slurry by magnetic resonance imaging. Cellulose, 2021, 28, 5321.	4.9	9
5	Yielding and rheopexy of aqueous xanthan gum solutions. Rheologica Acta, 2021, 60, 653-660.	2.4	10
6	Wood-Mimicking Bio-Based Biporous Polymeric Materials with Anisotropic Tubular Macropores. Polymers, 2021, 13, 2692.	4.5	4
7	Oldroyd's model and the foundation of modern rheology of yield stress fluids. Journal of Non-Newtonian Fluid Mechanics, 2021, 295, 104604.	2.4	14
8	Extensional gravity-rheometry (EGR) for yield stress fluids. Journal of Rheology, 2021, 65, 887-901.	2.6	15
9	Mechanisms of liquid imbibition in Douglas-fir inferred from $\langle \sup 1 \langle \sup H $ nuclear magnetic resonance methods. Holzforschung, 2021, 75, 225-236.	1.9	4
10	Progress in rheology and hydrodynamics allowed by NMR or MRI techniques. Experiments in Fluids, 2020, $61, 1.$	2.4	19
11	How Bound Water Regulates Wood Drying. Physical Review Applied, 2020, 14, .	3.8	33
12	Yielding, thixotropy, and strain stiffening of aqueous carbon black suspensions. Journal of Rheology, 2020, 64, 955-968.	2.6	11
13	Thermal fatigue and collapse of waxy suspensions. Rheologica Acta, 2020, 59, 279-289.	2.4	6
14	The liquid regime of waxy oils suspensions: A magnetic resonance velocimetry analysis. Journal of Non-Newtonian Fluid Mechanics, 2020, 279, 104261.	2.4	11
15	Magnetic Resonance Imaging of drying bitumen emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 591, 124512.	4.7	4
16	Drying of a Compressible Biporous Material. Physical Review Applied, 2020, 13, .	3.8	14
17	Propagation and adsorption of nanoparticles in porous medium as traveling waves. Physical Review Research, 2020, 2, .	3.6	7
18	Dense granular flows in a vertical chute. , 2020, , 399-402.		6

#	Article	IF	CITATIONS
19	Controlled imbibition in a porous medium from a soft wet material (poultice). Soft Matter, 2019, 15, 6732-6741.	2.7	4
20	Editorial: Saline Water Evaporation from Porous Media. Transport in Porous Media, 2019, 128, 857-859.	2.6	3
21	Self-Limited Accumulation of Colloids in Porous Media. Physical Review Letters, 2019, 123, 158005.	7.8	31
22	Convective drying of a porous medium with a paste cover. European Physical Journal E, 2019, 42, 66.	1.6	12
23	Saffman–Taylor Instability in Yield Stress Fluids: Theory–Experiment Comparison. Fluids, 2019, 4, 53.	1.7	12
24	Brittle solid collapse to simple liquid for a waxy suspension. Soft Matter, 2019, 15, 8766-8777.	2.7	12
25	Some Observations on the Impact of a Low-Solubility Ionic Solution on Drying Characteristics of a Model Porous Medium. Transport in Porous Media, 2019, 128, 915-928.	2.6	6
26	Elastoplastic behavior of yield stress fluids. Physical Review Fluids, 2019, 4, .	2.5	22
27	Wetting enhanced by water adsorption in hygroscopic plantlike materials. Physical Review Research, 2019, 1, .	3.6	24
28	Particle-Size-Exclusion Clogging Regimes in Porous Media. Physical Review Letters, 2018, 120, 148001.	7.8	22
29	Yielding and Flow of Soft-Jammed Systems in Elongation. Physical Review Letters, 2018, 120, 048001.	7.8	34
30	Magnetic resonance imaging evidences of the impact of water sorption on hardwood capillary imbibition dynamics. Wood Science and Technology, 2018, 52, 929-955.	3.2	34
31	Slow flows of yield stress fluids: yielding liquids or flowing solids?. Rheologica Acta, 2018, 57, 1-14.	2.4	38
32	Synergistic actions of mixed small and large pores for capillary absorption through biporous polymeric materials. Soft Matter, 2018, 14, 8137-8146.	2.7	9
33	Strengthening and drying rate of a drying emulsion layer. Soft Matter, 2018, 14, 8612-8626.	2.7	12
34	Wall slip mechanisms in direct and inverse emulsions. Journal of Rheology, 2018, 62, 1495-1513.	2.6	18
35	Complex-Fluid Approach for Determining Rheological Characteristics of Fine-Grained Soils and Clay Minerals. Journal of Materials in Civil Engineering, 2018, 30, 04018322.	2.9	0
36	NMR observation of water transfer between a cement paste and a porous medium. Cement and Concrete Research, 2017, 95, 56-64.	11.0	39

#	Article	IF	CITATIONS
37	Combined time-lapse magnetic resonance imaging and modeling to investigate colloid deposition and transport in porous media. Water Research, 2017, 123, 12-20.	11.3	11
38	Introduction: yield stressâ€"or 100Âyears of rheology. Rheologica Acta, 2017, 56, 161-162.	2.4	14
39	Yield Stress and Minimum Pressure for Simulating the Flow Restart of a Waxy Crude Oil Pipeline. Energy & Energy	5.1	33
40	Bingham's heritage. Rheologica Acta, 2017, 56, 163-176.	2.4	34
41	Wall Slip of Soft-Jammed Systems: A Generic Simple Shear Process. Physical Review Letters, 2017, 119, 208004.	7.8	18
42	Transport and Adsorption of Nano-Colloids in Porous Media Observed by Magnetic Resonance Imaging. Transport in Porous Media, 2017, 119, 403-423.	2.6	7
43	Drying regimes in homogeneous porous media from macro- to nanoscale. Physical Review Fluids, 2017, 2, .	2.5	48
44	Drying kinetics of deformable and cracking nano-porous gels. European Physical Journal E, 2016, 39, 117.	1.6	13
45	Dip-coating of yield stress fluids. Physics of Fluids, 2016, 28, 053102.	4.0	21
46	NMR and MRI observation of water absorption/uptake in hemp shives used for hemp concrete. Construction and Building Materials, 2016, 124, 405-413.	7.2	29
47	Rayleigh-Taylor Instability in Elastoplastic Solids: A Local Catastrophic Process. Physical Review Letters, 2016, 116, 154502.	7.8	24
48	Blade-coating of yield stress fluids. Journal of Non-Newtonian Fluid Mechanics, 2016, 237, 16-25.	2.4	12
49	Water retention against drying with soft-particle suspensions in porous media. Physical Review E, 2016, 94, 033104.	2.1	18
50	Magnetic resonance imaging measurements evidence weak dispersion in homogeneous porous media. Physical Review E, 2016, 94, 053107.	2.1	16
51	Subflorescence and plaster drying dynamics. Chemical Engineering Science, 2016, 148, 203-211.	3.8	10
52	Drying kinetics driven by the shape of the air/water interface in a capillary channel. European Physical Journal E, 2016, 39, 23.	1.6	40
53	Rheology of lime paste—a comparison with cement paste. Rheologica Acta, 2015, 54, 647-656.	2.4	39
54	Flow characteristics around a plate withdrawn from a bath of yield stress fluid. Journal of Non-Newtonian Fluid Mechanics, 2015, 220, 33-43.	2.4	20

#	Article	IF	CITATIONS
55	Porous structure and mechanical strength of cement-lime pastes during setting. Cement and Concrete Research, 2015, 77, 1-8.	11.0	28
56	Water transfer and crack regimes in nanocolloidal gels. Physical Review E, 2015, 91, 042407.	2.1	12
57	The mechanisms of plaster drying. Journal of Materials Science, 2015, 50, 2491-2501.	3.7	13
58	Modeling the rheological behavior of waxy crude oils as a function of flow and temperature history. Journal of Rheology, 2015, 59, 703-732.	2.6	57
59	Reversible and irreversible destructuring flow in waxy oils: An MRI study. Journal of Non-Newtonian Fluid Mechanics, 2015, 220, 77-86.	2.4	39
60	Quantitative exploitation of PFG NMR and MRI velocimetry data for the rheological study of yield stress fluid flows at macro- and micro-scales in complex geometries. Experiments in Fluids, 2015, 56, 1.	2.4	6
61	Efficient numerical computations of yield stress fluid flows using second-order cone programming. Computer Methods in Applied Mechanics and Engineering, 2015, 283, 599-614.	6.6	35
62	Solid-Solid Transition in Landau-Levich Flow with Soft-Jammed Systems. Physical Review Letters, 2014, 112, 068304.	7.8	27
63	Breakage of non-Newtonian character in flow through a porous medium: Evidence from numerical simulation. Physical Review E, 2014, 89, 063018.	2.1	20
64	Breaking of non-Newtonian character in flows through a porous medium. Physical Review E, 2014, 89, 023002.	2.1	39
65	Yield stress fluid flows: A review of experimental data. Journal of Non-Newtonian Fluid Mechanics, 2014, 211, 31-49.	2.4	375
66	Rheophysics. Soft and Biological Matter, 2014, , .	0.3	24
67	Velocity distributions in confined flows of some complex fluids: Sequence, sample and hardware issues. Journal of Magnetic Resonance, 2014, 245, 156-170.	2.1	2
68	Boundary layer (shear-band) in frustrated viscoplastic flows. Europhysics Letters, 2013, 102, 48002.	2.0	24
69	Entrance and exit effects for a viscoelastic liquid displacing a simple liquid through a contraction. Journal of Non-Newtonian Fluid Mechanics, 2013, 199, 51-60.	2.4	0
70	Darcy's law for yield stress fluid flowing through a porous medium. Journal of Non-Newtonian Fluid Mechanics, 2013, 195, 57-66.	2.4	77
71	MRI evidence for a receding-front effect in drying porous media. Physical Review E, 2013, 87, 062303.	2.1	53
72	Rheopexy and tunable yield stress of carbon black suspensions. Soft Matter, 2013, 9, 5540.	2.7	54

#	Article	IF	Citations
73	Enhanced displacement of a liquid pushed by a viscoelastic fluid. Journal of Colloid and Interface Science, 2013, 410, 172-180.	9.4	11
74	On the existence of a simple yield stress fluid behavior. Journal of Non-Newtonian Fluid Mechanics, 2013, 193, 68-79.	2.4	140
75	Measuring the surface tension of yield stress fluids. Soft Matter, 2013, 9, 5898.	2.7	67
76	Rheological behaviour of reconstituted pyroclastic debris flow. Geotechnique, 2012, 62, 19-27.	4.0	38
77	Thixotropic Behavior of Paving-Grade Bitumens under Dynamic Shear. Journal of Materials in Civil Engineering, 2012, 24, 23-31.	2.9	19
78	Introduction to the rheology of complex fluids. , 2012, , 3-22.		12
79	Measuring yield stress: a new, practical, and precise technique derived from detailed penetrometry analysis. Rheologica Acta, 2012, 51, 867-882.	2.4	31
80	Water transfers within Hemp Lime Concrete followed by NMR. Cement and Concrete Research, 2012, 42, 1468-1474.	11.0	19
81	How water retention in porous media with cellulose ethers works. Cement and Concrete Research, 2012, 42, 1501-1512.	11.0	61
82	Boundary layer in pastesâ€"Displacement of a long object through a yield stress fluid. Journal of Rheology, 2012, 56, 1083-1108.	2.6	35
83	Normal Stresses and Interface Displacement: Influence of Viscoelasticity on Enhanced Oil Recovery Efficiency. Oil and Gas Science and Technology, 2012, 67, 921-930.	1.4	9
84	Internal Flow Characteristics of a Plastic Kaolin Suspension During Extrusion. Journal of the American Ceramic Society, 2012, 95, 494-501.	3.8	11
85	Shear-induced sedimentation in yield stress fluids. Journal of Non-Newtonian Fluid Mechanics, 2012, 177-178, 19-28.	2.4	66
86	Physical origin of shear-banding in jammed systems. European Physical Journal E, 2010, 33, 183-188.	1.6	95
87	Foreword: Special issue on papers presented at the de Gennes Discussion Conference, Chamonix, February 1st–5th, 2009. Rheologica Acta, 2010, 49, 423-424.	2.4	1
88	The extrusion of a model yield stress fluid imaged by MRI velocimetry. Journal of Non-Newtonian Fluid Mechanics, 2010, 165, 394-408.	2.4	30
89	Steady state flow of cement suspensions: A micromechanical state of the art. Cement and Concrete Research, 2010, 40, 77-84.	11.0	382
90	Three-dimensional jamming and flows of soft glassy materials. Nature Materials, 2010, 9, 115-119.	27. 5	136

#	Article	IF	CITATIONS
91	Solid-liquid transition and rejuvenation similarities in complex flows of thixotropic materials studied by NMR and MRI. Physical Review E, 2010, 81, 021402.	2.1	26
92	Drying of a model soil. Physical Review E, 2010, 82, 036303.	2.1	48
93	Adhesion of yield stress fluids. Soft Matter, 2010, , .	2.7	19
94	Rheological behaviour of pyroclastic debris flow. , 2010, , .		4
95	Modeling Aging and Yielding of Complex Fluids: Application to an Industrial Material. Oil and Gas Science and Technology, 2009, 64, 571-581.	1.4	4
96	De Gennes Discussion Conference 2009. Applied Rheology, 2009, 19, 250-251.	5.2	0
97	Phenomenology and physical origin of shear localization and shear banding in complex fluids. Rheologica Acta, 2009, 48, 831-844.	2.4	226
98	An investigation of squeeze flow as a viable technique for determining the yield stress. Rheologica Acta, 2009, 48, 517-526.	2.4	29
99	The future of suspension rheophysics: comments on the 2008 workshop. Rheologica Acta, 2009, 48, 827-829.	2.4	6
100	Macroscopic vs. local rheology of yield stress fluids. Journal of Non-Newtonian Fluid Mechanics, 2009, 158, 85-90.	2.4	174
101	Passing ability of fresh concrete: A probabilistic approach. Cement and Concrete Research, 2009, 39, 227-232.	11.0	37
102	Modelling thixotropic behavior of fresh cement pastes from MRI measurements. Cement and Concrete Research, 2008, 38, 616-623.	11.0	33
103	Some Applications of Magnetic Resonance Imaging in Fluid Mechanics: Complex Flows and Complex Fluids. Annual Review of Fluid Mechanics, 2008, 40, 209-233.	25.0	92
104	Rheology of dense snow flows: Inferences from steady state chute-flow experiments. Journal of Rheology, 2008, 52, 729-748.	2.6	35
105	Yield stress and elastic modulus of suspensions of noncolloidal particles in yield stress fluids. Journal of Rheology, 2008, 52, 287-313.	2.6	157
106	Suspensions of Noncolloidal Particles in Yield Stress Fluids: Experimental and Micromechanical Approaches. AIP Conference Proceedings, 2008, , .	0.4	3
107	Transition from a Simple Yield Stress Fluid to a Thixotropic Material. AIP Conference Proceedings, 2008, , .	0.4	1
108	Aging and Yielding of Colloidal Suspension by MRI Velocimetry. AIP Conference Proceedings, 2008, , .	0.4	1

#	Article	IF	Citations
109	The Squeeze Flow of Yield Stress Fluids. AIP Conference Proceedings, 2008, , .	0.4	0
110	Wide-gap Couette flows of dense emulsions: Local concentration measurements, and comparison between macroscopic and local constitutive law measurements through magnetic resonance imaging. Physical Review E, 2008, 78, 036307.	2.1	94
111	Gelation on the microscopic scale. Physical Review E, 2008, 78, 021405.	2.1	45
112	Thixotropic Behavior of Fresh Cement Pastes from Inclined Plane Flow Measurements. Applied Rheology, 2008, 18, 14251-1-14251-8.	5. 2	5
113	Transition from a simple yield-stress fluid to a thixotropic material. Physical Review E, 2007, 76, 051408.	2.1	74
114	Physical age of soft-jammed systems. Physical Review E, 2007, 76, 011406.	2.1	54
115	General Probabilistic Approach to the Filtration Process. Physical Review Letters, 2007, 98, 114502.	7.8	88
116	Prédiction de la capacité d'un béton frais à remplir un coffrage. Revue Européenne De Génie Civil, 200 11, 463-475.	⁷ _{0.0}	0
117	Drag on a sphere moving through an aging system. Europhysics Letters, 2007, 78, 68007.	2.0	19
118	Drag force on a sphere in steady motion through a yield-stress fluid. Journal of Rheology, 2007, 51, 125-137.	2.6	128
119	Effect of wetting properties on the kinetics of drying of porous media. Journal of Physics Condensed Matter, 2007, 19, 112101.	1.8	61
120	Rheophysics of pastes: a review of microscopic modelling approaches. Soft Matter, 2007, 3, 528.	2.7	175
121	Flow in Glassy Systems European School of Rheology. Applied Rheology, 2007, 17, 228-229.	5.2	O
122	Gravity draining of a yield-stress fluid through an orifice. Chemical Engineering Science, 2007, 62, 6908-6913.	3.8	12
123	Prédiction de la capacité d'un béton frais à remplir un coffrage. Revue Européenne De Génie Civil, 200 11, 463-475.	⁷ o.o	O
124	Aging and solid or liquid behavior in pastes. Journal of Rheology, 2006, 50, 975-994.	2.6	189
125	Quantification de la thixotropie des matériaux cimentaires et de ses effet. Revue Européenne De Génie Civil, 2006, 10, 45-63.	0.0	4
126	How To Unify Low-Shear-Rate Rheology and Gel Properties of Drilling Muds: A Transient Rheological and Structural Model for Complex Wells Applications. , 2006, , .		9

#	Article	IF	Citations
127	Rheological Aspects of the Solid-Liquid Transition in Jammed Systems. , 2006, , 69-90.		10
128	Correlation between L-box test and rheological parameters of a homogeneous yield stress fluid. Cement and Concrete Research, 2006, 36, 1789-1796.	11.0	94
129	Flow instability and shear localization in a drilling mud. Rheologica Acta, 2006, 46, 261-271.	2.4	35
130	Flow of a yield stress fluid over a rotating surface. Rheologica Acta, 2006, 46, 341-355.	2.4	9
131	Dam Break Wave of Thixotropic Fluid. Journal of Hydraulic Engineering, 2006, 132, 280-293.	1.5	54
132	Ecoulements d'affaissement et d'étalement. Revue Européenne De Génie Civil, 2006, 10, 25-44.	0.0	2
133	Quantification de la thixotropie des matériaux cimentaires et de ses effets. Revue Européenne De Génie Civil, 2006, 10, 45-63.	0.0	6
134	Ecoulements d'affaissement et d'étalement. Modélisation, analyse et limites pratiques. Revue Européenne De Génie Civil, 2006, 10, 25-44.	0.0	7
135	Rheological Aspects of the Solid-Liquid Transition in Jammed Systems. , 2006, , 69-90.		0
136	Rheological behavior of cement pastes from MRI velocimetry. Cement and Concrete Research, 2005, 35, 1873-1881.	11.0	116
137	Continuous or catastrophic solid–liquid transition in jammed systems. Physics of Fluids, 2005, 17, 011704.	4.0	31
138	Model for Brownian Motion in Soft-Jammed Systems. Physical Review Letters, 2005, 95, 078303.	7.8	2
139	Gravity flow instability of viscoplastic materials: The ketchup drip. Physical Review E, 2005, 72, 031409.	2.1	71
140	From "discrete―to "continuum―flow in foams. Europhysics Letters, 2005, 69, 636-642.	2.0	69
141	Aging and free surface flow of a thixotropic fluid. Physics of Fluids, 2005, 17, 033101.	4.0	41
142	Flow of Wet Granular Materials. Physical Review Letters, 2005, 94, 028301.	7.8	144
143	"Fifty-cent rheometer―for yield stress measurements: From slump to spreading flow. Journal of Rheology, 2005, 49, 705-718.	2.6	363
144	Rheological Behavior of Drilling Muds, Characterization Using Mri Visualization. Oil and Gas Science and Technology, 2004, 59, 23-29.	1.4	53

#	Article	IF	CITATIONS
145	Aging and shear rejuvenation of soft glassy materials. AIP Conference Proceedings, 2004, , .	0.4	1
146	Abrupt Transition from Viscoelastic Solidlike to Liquidlike Behavior in Jammed Materials. Physical Review Letters, 2004, 93, 128302.	7.8	22
147	Motion of a solid object through a pasty (thixotropic) fluid. Physics of Fluids, 2004, 16, 594-601.	4.0	37
148	Ageing, shear rejuvenation and avalanches in soft glassy materials. Journal of Physics Condensed Matter, 2004, 16, S4987-S4992.	1.8	22
149	Mechanical characteristics and origin of wall slip in pasty biosolids. Rheologica Acta, 2004, 43, 168-174.	2.4	33
150	Practical determination of the rheological behavior of pasty biosolids. Journal of Environmental Management, 2004, 72, 181-188.	7.8	18
151	Thixotropy modelling at local and macroscopic scales. Journal of Non-Newtonian Fluid Mechanics, 2004, 117, 85-95.	2.4	101
152	New technique for reconstructing instantaneous velocity profiles from viscometric tests:â€,â€,Application to pasty materials. Journal of Rheology, 2004, 48, 69-82.	2.6	27
153	Wall slip and yielding in pasty materials. Journal of Rheology, 2003, 47, 1211-1226.	2.6	131
154	Viscosity bifurcation in granular materials, foams, and emulsions. Physical Review E, 2002, 66, 051305.	2.1	158
155	Viscosity bifurcation in thixotropic, yielding fluids. Journal of Rheology, 2002, 46, 573-589.	2.6	395
156	Coexistence of Liquid and Solid Phases in Flowing Soft-Glassy Materials. Physical Review Letters, 2002, 88, 218301.	7.8	287
157	Rheology of soft glassy materials. Europhysics Letters, 2002, 59, 786-792.	2.0	97
158	Direct determination by nuclear magnetic resonance of the thixotropic and yielding behavior of suspensions. Journal of Rheology, 2002, 46, 709-732.	2.6	135
159	Rheological Interpretation of the Slump Test. Applied Rheology, 2002, 12, 133-141.	5.2	27
160	Avalanche Behavior in Yield Stress Fluids. Physical Review Letters, 2002, 88, 175501.	7.8	347
161	Rheology of aging, concentrated, polymeric suspensions: Application to pasty sewage sludges. Journal of Rheology, 2001, 45, 1123-1139.	2.6	83
162	Viscous Fingering in a Gel., 2001, , 433-438.		1

#	Article	IF	CITATIONS
163	Direct Determination of Rheological Characteristics of Debris Flow. Journal of Hydraulic Engineering, 2000, 126, 158-159.	1.5	4
164	Closure to "Direct Determination of Rheological Characteristics of Debris Flow―by Philippe Coussot, Dominique Laigle, Massimo Arattano, Andrea Deganutti, and Lorenzo Marchi. Journal of Hydraulic Engineering, 2000, 126, 158-159.	1.5	4
165	Viscous Fingering in a Yield Stress Fluid. Physical Review Letters, 2000, 85, 314-317.	7.8	151
166	Scaling approach of the convective drying of a porous medium. European Physical Journal B, 2000, 15, 557-566.	1.5	120
167	Mouvements capillaires durant le séchage d'une pâte granulaire. Comptes Rendus De L'Academie De Sciences - Serie IIb: Mecanique, Physique, Chimie, Astronomie, 1999, 327, 1101-1106.	0.1	0
168	A theoretical framework for granular suspensions in a steady simple shear flow. Journal of Rheology, 1999, 43, 1673-1699.	2.6	98
169	Rheophysical classification of concentrated suspensions and granular pastes. Physical Review E, 1999, 59, 4445-4457.	2.1	200
170	Saffman–Taylor instability in yield-stress fluids. Journal of Fluid Mechanics, 1999, 380, 363-376.	3.4	100
171	Instabilité du front de retrait lors du séchage d'une suspension d'argile dans un empilement granulaire. Comptes Rendus De L'Academie De Sciences - Serie IIb: Mecanique, Physique, Chimie, Astronomie, 1998, 326, 767-774.	0.1	1
172	Critère d'instabilité du front de retrait lors du séchage lent d'une suspension d'argile dans un dièdre. Comptes Rendus De L'Academie De Sciences - Serie IIb: Mecanique, Physique, Chimie, Astronomie, 1998, 326, 919-926.	0.1	0
173	Pore size NMR imaging. Magnetic Resonance Imaging, 1998, 16, 621-623.	1.8	4
174	Direct Determination of Rheological Characteristics of Debris Flow. Journal of Hydraulic Engineering, 1998, 124, 865-868.	1.5	143
175	Imagerie par résonance magnétique appliquée aux matériaux du génie civil. Oil & Gas Science & Technology, 1998, 53, 527-529.	0.2	0
176	Numerical Modeling of Mudflows. Journal of Hydraulic Engineering, 1997, 123, 617-623.	1.5	154
177	Recognition, classification and mechanical description of debris flows. Earth-Science Reviews, 1996, 40, 209-227.	9.1	388
178	Slow, unconfined spreading of a mudflow. Journal of Geophysical Research, 1996, 101, 25217-25229.	3.3	61
179	Motion of a Single Bead on a Bead Row: Theoretical Investigations. Journal De Physique, I, 1996, 6, 725-751.	1.2	10
180	Examination of the possibility of a fluid-mechanics treatment of dense granular flows. International Journal for Numerical and Analytical Methods in Geomechanics, 1996, 1, 385-403.	0.8	25

#	Article	IF	CITATIONS
181	Rheological interpretation of deposits of yield stress fluids. Journal of Non-Newtonian Fluid Mechanics, 1996, 66, 55-70.	2.4	114
182	Determination of yield stress fluid behaviour from inclined plane test. Rheologica Acta, 1995, 34, 534-543.	2.4	77
183	Structural Similarity and Transition from Newtonian to Non-Newtonian Behavior for Clay-Water Suspensions. Physical Review Letters, 1995, 74, 3971-3974.	7.8	112
184	The effects of an addition of force-free particles on the rheological properties of fine suspensions. Canadian Geotechnical Journal, 1995, 32, 263-270.	2.8	25
185	Experimental Study of Debris Flows. Journal of Hydraulic Engineering, 1995, 121, 438-440.	1.5	4
186	A largeâ€scale field coaxial cylinder rheometer for the study of the rheology of natural coarse suspensions. Journal of Rheology, 1995, 39, 105-124.	2.6	78
187	Steady, laminar, flow of concentrated mud suspensions in open channel. Journal of Hydraulic Research/De Recherches Hydrauliques, 1994, 32, 535-559.	1.7	161
188	On the behavior of fine mud suspensions. Rheologica Acta, 1994, 33, 175-184.	2.4	162
189	Some considerations on debris flow rheology. , 1994, , 315-326.		5
190	Modélisation numérique des écoulements de laves torrentielles. Houille Blanche, 1994, 80, 50-56.	0.3	5
191	Steady, laminar, flow of concentrated mud suspensions in open channel. Journal of Hydraulic Research/De Recherches Hydrauliques, 1994, 32, 535-559.	1.7	36
192	Rheology of concentrated dispersed systems in a low molecular weight matrix. Journal of Non-Newtonian Fluid Mechanics, 1993, 46, 179-217.	2.4	143