Irvin Hussein Lopez-Nava

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9086531/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wearable Inertial Sensors for Human Motion Analysis: A Review. IEEE Sensors Journal, 2016, 16, 7821-7834.	4.7	167
2	Comparison between passive vision-based system and a wearable inertial-based system for estimating temporal gait parameters related to the GAITRite electronic walkway. Journal of Biomedical Informatics, 2016, 62, 210-223.	4.3	35
3	Estimation of temporal gait parameters using Bayesian models on acceleration signals. Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19, 396-403.	1.6	22
4	Monitoring behavioral symptoms of dementia using activity trackers. Journal of Biomedical Informatics, 2020, 109, 103520.	4.3	17
5	Gait Activity Classification on Unbalanced Data from Inertial Sensors Using Shallow and Deep Learning. Sensors, 2020, 20, 4756.	3.8	13
6	Semi-Automated Data Labeling for Activity Recognition in Pervasive Healthcare. Sensors, 2019, 19, 3035.	3.8	12
7	Human action recognition based on low- and high-level data from wearable inertial sensors. International Journal of Distributed Sensor Networks, 2019, 15, 155014771989453.	2.2	8
8	Towards Ubiquitous Acquisition and Processing of Gait Parameters. Lecture Notes in Computer Science, 2010, , 410-421.	1.3	7
9	Recognition of Gait Activities Using Acceleration Data from A Smartphone and A Wearable Device. Proceedings (mdpi), 2019, 31, .	0.2	5
10	Comparison of a Vision-Based System and a Wearable Inertial-Based System for a Quantitative Analysis and Calculation of Spatio-Temporal Parameters. Lecture Notes in Computer Science, 2015, , 116-122.	1.3	4
11	Variability Analysis of Therapeutic Movements using Wearable Inertial Sensors. Journal of Medical Systems, 2017, 41, 7.	3.6	4
12	High-Level Features for Recognizing Human Actions in Daily Living Environments Using Wearable Sensors. Proceedings (mdpi), 2018, 2, .	0.2	3
13	Complex human action recognition on daily living environments using wearable inertial sensors. , 2016, , .		2
14	Semi-Automated Annotation of Audible Home Activities. , 2019, , .		0
15	Study Design of an Environmental Smart Microphone System to Detect Anxiety in Patients with Dementia. , 2019, , .		0