Su Jung Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9086296/publications.pdf

Version: 2024-02-01

430874 677142 2,155 22 18 22 h-index citations g-index papers 22 22 22 4331 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	MicroRNA-Antagonism Regulates Breast Cancer Stemness and Metastasis via TET-Family-Dependent Chromatin Remodeling. Cell, 2013, 154, 311-324.	28.9	417
2	Nuclear PTEN Regulates the APC-CDH1 Tumor-Suppressive Complex inÂa Phosphatase-Independent Manner. Cell, 2011, 144, 187-199.	28.9	333
3	The Oncogenic MicroRNA miR-22 Targets the TET2 Tumor Suppressor to Promote Hematopoietic Stem Cell Self-Renewal and Transformation. Cell Stem Cell, 2013, 13, 87-101.	11.1	288
4	A metabolic prosurvival role for PML in breast cancer. Journal of Clinical Investigation, 2012, 122, 3088-3100.	8.2	220
5	Role of the Tumor Suppressor RASSF1A in Mst1-Mediated Apoptosis. Cancer Research, 2006, 66, 2562-2569.	0.9	167
6	The tumour suppressor RASSF1A promotes MDM2 self-ubiquitination by disrupting the MDM2–DAXX–HAUSP complex. EMBO Journal, 2008, 27, 1863-1874.	7.8	121
7	A UBE2O-AMPKα2 Axis that Promotes Tumor Initiation and Progression Offers Opportunities for Therapy. Cancer Cell, 2017, 31, 208-224.	16.8	98
8	Vulnerabilities of <i>PTEN</i> – <i>TP53</i> Deficient Prostate Cancers to Compound PARP–PI3K Inhibition. Cancer Discovery, 2014, 4, 896-904.	9.4	88
9	NEAT1 is essential for metabolic changes that promote breast cancer growth and metastasis. Cell Metabolism, 2021, 33, 2380-2397.e9.	16.2	73
10	PTEN self-regulates through USP11 via the PI3K-FOXO pathway to stabilize tumor suppression. Nature Communications, 2019, 10, 636.	12.8	53
11	Aurora A Regulates Prometaphase Progression by Inhibiting the Ability of RASSF1A to Suppress APC-Cdc20 Activity. Cancer Research, 2009, 69, 2314-2323.	0.9	49
12	MST1 Limits the Kinase Activity of Aurora B to Promote Stable Kinetochore-Microtubule Attachment. Current Biology, 2010, 20, 416-422.	3.9	48
13	Aurora B–Mediated Phosphorylation of RASSF1A Maintains Proper Cytokinesis by Recruiting Syntaxin16 to the Midzone and Midbody. Cancer Research, 2009, 69, 8540-8544.	0.9	36
14	Tetraspanins: Spanning from solid tumors to hematologic malignancies. Experimental Hematology, 2016, 44, 322-328.	0.4	34
15	miR-218 and miR-129 regulate breast cancer progression by targeting Lamins. Biochemical and Biophysical Research Communications, 2018, 496, 826-833.	2.1	32
16	miR-22 in tumorigenesis. Cell Cycle, 2014, 13, 11-12.	2.6	25
17	New Insights into the Role of E2s in the Pathogenesis of Diseases: Lessons Learned from UBE2O. Molecules and Cells, 2018, 41, 168-178.	2.6	23
18	Interplay between c-Src and the APC/C co-activator Cdh1 regulates mammary tumorigenesis. Nature Communications, 2019, 10, 3716.	12.8	19

#	Article	IF	CITATIONS
19	A muscle-specific UBE2O/AMPK $\hat{l}\pm 2$ axis promotes insulin resistance and metabolic syndrome in obesity. JCI Insight, 2019, 4, .	5.0	12
20	MicroRNAs in the pathogenesis of myelodysplastic syndromes and myeloid leukaemia. Current Opinion in Hematology, 2014, 21, 276-282.	2.5	11
21	A new duet in cancer biology: AMPK the typical and UBE2O the atypical. Molecular and Cellular Oncology, 2017, 4, e1304846.	0.7	5
22	MicroRNA, an Antisense RNA, in Sensing Myeloid Malignancies. Frontiers in Oncology, 2017, 7, 331.	2.8	3