
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9086152/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Standard intensities of transcranial alternating current stimulation over the motor cortex do not entrain corticospinal inputs to motor neurons. Journal of Physiology, 2023, 601, 3187-3199.	2.9	4
2	Feeling of Ownership over an Embodied Avatar's Hand Brings About Fast Changes of Fronto-Parietal Cortical Dynamics. Journal of Neuroscience, 2022, 42, 692-701.	3.6	29
3	Restless Legs Syndrome: Known Knowns and Known Unknowns. Brain Sciences, 2022, 12, 118.	2.3	13
4	Motor Cortical Network Excitability in Parkinson's Disease. Movement Disorders, 2022, 37, 734-744.	3.9	19
5	Incidence of amyotrophic lateral sclerosis in Sardinia, Italy: age–sex interaction and spatial–temporal variability. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2022, 23, 585-591.	1.7	7
6	A Critical Investigation of Cerebellar Associative Learning in Isolated Dystonia. Movement Disorders, 2022, 37, 1187-1192.	3.9	8
7	Proactive inhibition is marked by differences in the pattern of motor cortex activity during movement preparation and execution. Journal of Neurophysiology, 2022, 127, 819-828.	1.8	5
8	Does Olfactory Dysfunction Correlate with Disease Progression in Parkinson's Disease? A Systematic Review of the Current Literature. Brain Sciences, 2022, 12, 513.	2.3	17
9	Action Selection and Motor Decision Making: Insights from Transcranial Magnetic Stimulation. Brain Sciences, 2022, 12, 639.	2.3	2
10	How Do I Find Clues About Where Myoclonus Is Originating?. Movement Disorders Clinical Practice, 2022, 9, 721-722.	1.5	1
11	Reversal of Temporal Discrimination in Cervical Dystonia after Lowâ€Frequency Sensory Stimulation. Movement Disorders, 2021, 36, 761-766.	3.9	11
12	Defective Somatosensory Inhibition and Plasticity Are Not Required to Develop Dystonia. Movement Disorders, 2021, 36, 1015-1021.	3.9	17
13	Disentangling EEG responses to TMS due to cortical and peripheral activations. Brain Stimulation, 2021, 14, 4-18.	1.6	126
14	Corticospinal excitability modulation by pairing peripheral nerve stimulation with cortical states of movement initiation. Journal of Physiology, 2021, 599, 2471-2482.	2.9	11
15	Transcranial Evoked Potentials Can Be Reliably Recorded with Active Electrodes. Brain Sciences, 2021, 11, 145.	2.3	31
16	Brainstem Reflexes in Idiopathic Cervical Dystonia: Does Medullary Dysfunction Play a Role?. Movement Disorders Clinical Practice, 2021, 8, 377-384.	1.5	1
17	The Signature of Primary Writing Tremor Is Dystonic. Movement Disorders, 2021, 36, 1715-1720.	3.9	16
18	Frequency-dependent modulation of cerebellar excitability during the application of non-invasive alternating current stimulation. Brain Stimulation, 2021, 14, 277-283.	1.6	20

#	Article	IF	CITATIONS
19	Contribution of TMS and TMS-EEG to the Understanding of Mechanisms Underlying Physiological Brain Aging. Brain Sciences, 2021, 11, 405.	2.3	14
20	Stimulating the deprived motor â€~hand' area causes facial muscle responses in one-handers. Brain Stimulation, 2021, 14, 347-350.	1.6	4
21	Preconditioning Stimulus Intensity Alters Paired-Pulse TMS Evoked Potentials. Brain Sciences, 2021, 11, 326.	2.3	12
22	The Expanding Horizon of Neural Stimulation for Hyperkinetic Movement Disorders. Frontiers in Neurology, 2021, 12, 669690.	2.4	1
23	TMS-EEG indexes abnormal GABAergic signalling in patients with schizophrenia. BJPsych Open, 2021, 7, S52-S52.	0.7	0
24	Reply to: "A Primary Writing Tremor Is a Form of Dystonic Tremor: Is the Debate Settled?― Movement Disorders, 2021, 36, 1996-1997.	3.9	0
25	Qualitative smell/taste disorders as sequelae of acute COVID-19. Neurological Sciences, 2021, 42, 4921-4926.	1.9	42
26	Two forms of short-interval intracortical inhibition in human motor cortex. Brain Stimulation, 2021, 14, 1340-1352.	1.6	16
27	Evidence for interhemispheric imbalance in stroke patients as revealed by combining transcranial magnetic stimulation and electroencephalography. Human Brain Mapping, 2021, 42, 1343-1358.	3.6	46
28	Novel TMS-EEG indexes to investigate interhemispheric dynamics in humans. Clinical Neurophysiology, 2020, 131, 70-77.	1.5	42
29	Temporal Discrimination is Altered in Patients With Isolated Asymmetric and Jerky Upper Limb Tremor. Movement Disorders, 2020, 35, 306-315.	3.9	17
30	Influence of theta-burst transcranial magnetic stimulation over the dorsolateral prefrontal cortex on emotion processing in healthy volunteers. Cognitive, Affective and Behavioral Neuroscience, 2020, 20, 1278-1293.	2.0	17
31	Reply: Pentameric repeat expansions: cortical myoclonus or cortical tremor? and Cortical tremor: a tantalizing conundrum between cortex and cerebellum. Brain, 2020, 143, e88-e88.	7.6	1
32	Ropinirole, a dopamine agonist with high D3 affinity, reduces proactive inhibition: A double-blind, placebo-controlled study in healthy adults. Neuropharmacology, 2020, 179, 108278.	4.1	14
33	Delineating the electrophysiological signature of dystonia. Experimental Brain Research, 2020, 238, 1685-1692.	1.5	25
34	On the Use of TMS to Investigate the Pathophysiology of Neurodegenerative Diseases. Frontiers in Neurology, 2020, 11, 584664.	2.4	24
35	Unravelling the enigma of cortical tremor and other forms of cortical myoclonus. Brain, 2020, 143, 2653-2663.	7.6	38
36	Happy faces selectively increase the excitability of cortical neurons innervating frowning muscles of the mouth. Experimental Brain Research, 2020, 238, 1043-1049.	1.5	1

#	Article	IF	CITATIONS
37	Differential effects of motor skill acquisition on the primary motor and sensory cortices in healthy humans. Journal of Physiology, 2020, 598, 4031-4045.	2.9	20
38	Voluntary Inhibitory Control of Chorea: A Case Series. Movement Disorders Clinical Practice, 2020, 7, 308-312.	1.5	6
39	Impaired automatic but intact volitional inhibition in primary tic disorders. Brain, 2020, 143, 906-919.	7.6	35
40	Pulse width biases the balance of excitation and inhibition recruited by transcranial magnetic stimulation. Brain Stimulation, 2020, 13, 536-538.	1.6	22
41	Tremor in motor neuron disease may be central rather than peripheral in origin. European Journal of Neurology, 2019, 26, 394.	3.3	5
42	Ten‥ear Reflections on the Neurophysiological Abnormalities of Focal Dystonias in Humans. Movement Disorders, 2019, 34, 1616-1628.	3.9	39
43	A case of congenital hypoplasia of the left cerebellar hemisphere and ipsilateral cortical myoclonus. Movement Disorders, 2019, 34, 1745-1747.	3.9	12
44	The interindividual variability of transcranial magnetic stimulation effects: Implications for diagnostic use in movement disorders. Movement Disorders, 2019, 34, 936-949.	3.9	44
45	The use of transcranial magnetic stimulation as a treatment for movement disorders: A critical review. Movement Disorders, 2019, 34, 769-782.	3.9	48
46	Cortical Paired Associative Stimulation Influences Response Inhibition: Cortico-cortical and Cortico-subcortical Networks. Biological Psychiatry, 2019, 85, 355-363.	1.3	34
47	Cerebellar and brainstem functional abnormalities in patients with primary orthostatic tremor. Movement Disorders, 2018, 33, 1024-1025.	3.9	10
48	F274. Paired Associative Stimulation Influences Response Inhibition: Cortico-Cortical and Cortico-Subcortical Networks. Biological Psychiatry, 2018, 83, S345-S346.	1.3	1
49	Effects of pulse width, waveform and current direction in the cortex: A combined cTMS-EEG study. Brain Stimulation, 2018, 11, 1063-1070.	1.6	61
50	Effect of donepezil on transcranial magnetic stimulation parameters in Alzheimer's disease. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2018, 4, 103-107.	3.7	12
51	Reappraisal of cortical myoclonus: A retrospective study of clinical neurophysiology. Movement Disorders, 2018, 33, 339-341.	3.9	17
52	Plasticity Induced in the Human Spinal Cord by Focal Muscle Vibration. Frontiers in Neurology, 2018, 9, 935.	2.4	16
53	Cerebellar Theta-Burst Stimulation Impairs Memory Consolidation in Eyeblink Classical Conditioning. Neural Plasticity, 2018, 2018, 1-8.	2.2	13
54	High frequency somatosensory stimulation in dystonia: Evidence fordefective inhibitory plasticity. Movement Disorders, 2018, 33, 1902-1909.	3.9	43

#	Article	IF	CITATIONS
55	Motor cortical excitability during voluntary inhibition of involuntary tic movements. Movement Disorders, 2018, 33, 1804-1809.	3.9	25
56	Reply: "Reappraisal of cortical myoclonus: Electrophysiology is the gold standard― Movement Disorders, 2018, 33, 1191-1191.	3.9	2
57	Observing Without Acting: A Balance of Excitation and Suppression in the Human Corticospinal Pathway?. Frontiers in Neuroscience, 2018, 12, 347.	2.8	16
58	Variability and Predictors of Response to Continuous Theta Burst Stimulation: A TMS-EEG Study. Frontiers in Neuroscience, 2018, 12, 400.	2.8	64
59	High frequency somatosensory stimulation increases sensori-motor inhibition and leads to perceptual improvement in healthy subjects. Clinical Neurophysiology, 2017, 128, 1015-1025.	1.5	45
60	Probing the timing network: A continuous theta burst stimulation study of temporal categorization. Neuroscience, 2017, 356, 167-175.	2.3	20
61	Pathophysiological heterogeneity in Parkinson's disease: Neurophysiological insights from LRRK2 mutations. Movement Disorders, 2017, 32, 1333-1335.	3.9	9
62	Neurophysiological correlates of abnormal somatosensory temporal discrimination in dystonia. Movement Disorders, 2017, 32, 141-148.	3.9	67
63	[P3–208]: EFFECT OF DONEPEZIL ON TRANSCRANIAL MAGNETIC STIMULATION PARAMETERS IN ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2017, 13, P1015.	0.8	0
64	Controllable Pulse Parameter TMS and TMS-EEG As Novel Approaches to Improve Neural Targeting with rTMS in Human Cerebral Cortex. Frontiers in Neural Circuits, 2016, 10, 97.	2.8	23
65	Somatosensory temporal discrimination threshold is impaired in patients with multiple sclerosis. Clinical Neurophysiology, 2016, 127, 1940-1941.	1.5	8
66	Continuous Theta Burst Stimulation Over the Dorsolateral Prefrontal Cortex and the Pre-SMA Alter Drift Rate and Response Thresholds Respectively During Perceptual Decision-Making. Brain Stimulation, 2016, 9, 601-608.	1.6	40
67	Effects of cerebellar theta-burst stimulation on arm and neck movement kinematics in patients with focal dystonia. Clinical Neurophysiology, 2016, 127, 3472-3479.	1.5	56
68	Visual cortex hyperexcitability contributes to the pathophysiology of the photoparoxysmal response. Clinical Neurophysiology, 2016, 127, 3351-3352.	1.5	3
69	Impaired eye blink classical conditioning distinguishes dystonic patients with and without tremor. Parkinsonism and Related Disorders, 2016, 31, 23-27.	2.2	52
70	Somatosensory Temporal Discrimination Threshold Involves Inhibitory Mechanisms in the Primary Somatosensory Area. Journal of Neuroscience, 2016, 36, 325-335.	3.6	80
71	High frequency repetitive sensory stimulation improves temporal discrimination in healthy subjects. Clinical Neurophysiology, 2016, 127, 817-820.	1.5	21
72	Attention-related changes in short-term cortical plasticity help to explain fatigue in multiple sclerosis. Multiple Sclerosis Journal, 2016, 22, 1359-1366.	3.0	22

#	Article	IF	CITATIONS
73	Abnormal motor cortex excitability during linguistic tasks in adductorâ€ŧype spasmodic dysphonia. European Journal of Neuroscience, 2015, 42, 2051-2060.	2.6	22
74	Molecular imaging of levodopa-induced dyskinesias. Cellular and Molecular Life Sciences, 2015, 72, 2107-2117.	5.4	18
75	Reversal of Practice-related Effects on Corticospinal Excitability has no Immediate Effect on Behavioral Outcome. Brain Stimulation, 2015, 8, 603-612.	1.6	31
76	The Photoparoxysmal Response Reflects Abnormal Early Visuomotor Integration in the Human Motor Cortex. Brain Stimulation, 2015, 8, 1151-1161.	1.6	11
77	Does the cerebellum intervene in the abnormal somatosensory temporal discrimination in Parkinson's disease?. Parkinsonism and Related Disorders, 2015, 21, 789-792.	2.2	26
78	Cerebellar Continuous Theta Burst Stimulation in Essential Tremor. Cerebellum, 2015, 14, 133-141.	2.5	38
79	Recent imaging advances in neurology. Journal of Neurology, 2015, 262, 2182-2194.	3.6	33
80	Early Visuomotor Integration Processes Induce LTP/LTD-Like Plasticity in the Human Motor Cortex. Cerebral Cortex, 2015, 25, 703-712.	2.9	30
81	Cerebellar continuous thetaâ€burst stimulation affects motor learning of voluntary arm movements in humans. European Journal of Neuroscience, 2014, 39, 124-131.	2.6	32
82	Primary somatosensory cortical plasticity and tactile temporal discrimination in focal hand dystonia. Clinical Neurophysiology, 2014, 125, 537-543.	1.5	53
83	Inferior Parietal Lobule Encodes Visual Temporal Resolution Processes Contributing to the Critical Flicker Frequency Threshold in Humans. PLoS ONE, 2014, 9, e98948.	2.5	18
84	Somatosensory temporal discrimination threshold may help to differentiate patients with multiple system atrophy from patients with <scp>P</scp> arkinson's disease. European Journal of Neurology, 2013, 20, 714-719.	3.3	35
85	Theta-Burst Stimulation-Induced Plasticity over Primary Somatosensory Cortex Changes Somatosensory Temporal Discrimination in Healthy Humans. PLoS ONE, 2012, 7, e32979.	2.5	85